论文部分内容阅读
快速准确地获取农作物分布数据对作物估产、灾害预警具有重要意义。该文针对目前农情遥感监测业务中普遍存在的缺乏地面数据和分类时效性较低的问题,以美国堪萨斯州为研究区,提出了基于参考时间序列获得训练样本的方法。首先,基于2006到2013年的MODIS EVI时间序列数据和cropland data layer(CDL)数据,使用免疫系统网络方法建立苜蓿、玉米、高粱和冬小麦的参考EVI时间序列;根据2006年到2013年作物分布情况,将作物超过总记录年数一半的象元作为2014年"潜在"训练样本;通过计算参