论文部分内容阅读
煤炭物流成本控制的必要条件就是对其成本进行预测,这样才能对煤炭物流成本进行科学合理地控制。本文提出一种鸡群算法(CSO)和支持向量回归机(SVR)结合模型,即CSO-SVR煤炭物流成本预测模型。模型利用CSO算法对SVR进行参数优化,优化后的支持向量回归机模型进行煤炭物流成本预测。通过CSOSVR模型对已有煤炭物流成本数据预测仿真。模拟结果显示,从煤炭物流成本预测精度角度出发,CSO-SVR模型预测结果优于GA-SVR、SVR、BPNN等算法。