【摘 要】
:
As an effective and competitive supplement to the commercial-ized lithium ion batteries (LIBs),sodium ion batteries (SIBs) have been receiving increasing attention in recent years due to lower cost,richer content,and broader distribution of sodium [1-7].S
【机 构】
:
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM),Nanjing Tech
论文部分内容阅读
As an effective and competitive supplement to the commercial-ized lithium ion batteries (LIBs),sodium ion batteries (SIBs) have been receiving increasing attention in recent years due to lower cost,richer content,and broader distribution of sodium [1-7].Sodium has similar electrochemical properties to lithium,and thus the concepts for the preparation of electrode materials for SIBs can be borrowed from LIBs [8,9].On this basis,cathode materials have achieved some progress [10-12].Still,the inability of graphite to store sodium has stimulated research on other types of anode materials,including organic-based materials,alloying-based mate-rials,redox-based materials,and insertion-based materials[13-16].Currently,one of the most critical challenges for SIB anodes is their sluggish electrochemical intercalated reaction kinetics caused by the larger ion radius.More discussions in this area are still needed to understand ions storage mechanisms in dif-ferent conditions,and it is essential to explore novel strategies for electrodes designing.
其他文献
Exploring highly foldable batteries with no safety hazard is a crucial task for the realization of portable,wearable,and implantable electric devices.Given these concerns,developing solid-state batteries is one of the most promising routes to achieve this
Tantalum nitride (Ta3N6) is a very promising photoanode material due to its narrow band gap (2.1 eV)and suitable band alignment for solar water splitting.However,it suffers from severe photocorrosion during water oxidation.In this work,it was found that s
Photodeposition is widely adopted for implanting metal/metal oxide cocatalysts on semiconductors.However,it is prerequisite that the photon energy should be sufficient to excite the host semiconductor.Here,we report a lower-energy irradiation powered depo
Molybdenum sulfide (MoS2) with well-designed porous structure has the potential to be great electrode materials in sodium-ion batteries due to its high theoretical capacity and abundant resource,however,hindered by its intrinsic low conductivity and stabi
Photoelectrochemical (PEC) water-splitting using solar energy holds great promise for the renewable energy future,and a key challenge in the development of industry viable PEC devices is the unavailability of high-efficient photoanodes.Herein,we designed
Poly(ethylene oxide) (PEO) and its derivatives based gel polymer electrolytes (GPEs) are severely limited in advanced and safe lithium-ion batteries (LIBs) owing to the intrinsically high flammability of liquid electrolytes and PEO.Directly adding flame r
The quality of MAPbI3 film prepared by solvent engineering process highly depends on environment and antisolvent control.Here,we provided a simple methylamine chloride (MACl) solution treatment using a two-step process to enlarge the perovskite crystal gr
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane (DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-add
In this work,a covalent organic framework (COF),which is constructed by the building blocks of[5,10,15,20-tetrakis(4-aminophenyl)porphinato]copper(Ⅱ) (CuTAPP) and p-benzaldehyde,is employed to integrate with TiO2 for the purpose of establishing a Z-scheme
Transition metal cation ordering is essential for controlling the electrochemical performance of cubic spinel LiNi0.5Mn1.5O4 (LNMO),which is conventionally adjusted by optimizing the high temperature sin-tering and annealing procedures.In this present wor