论文部分内容阅读
Coupling the quasi 3D numerical simulation of electromagnetic field and the experiments with some metals such as tin, aluminum, copper and steel, the electromagnetic characteristics of continuous casting with soft contacted mould, especially the influences of power frequency, the mould structure, and the inductor position, size and current on the electromagnetic force and pressure on the billet, were analyzed. The result shows that, in continuous casting with soft contacted mould, the electromagnetic pressure on the surface of billet increases with the rising of the power frequency as a logarithmically parabolic function and, with that of inductor current as a parabolic function. The design principle of the soft contacted mould is that 1) the mould structure should be ‘more segments and thin slits’; 2) the topside of inductor should be at the same location with the meniscus of molten metal; 3) the inductor should cover the initial solidifying shell of billet.
Coupling the quasi 3D numerical simulation of electromagnetic field and the experiments with some metals such as tin, aluminum, copper and steel, the electromagnetic characteristics of continuous casting with soft coated mold, especially the influences of power frequency, the mold structure, and the inductor position, size and current on the electromagnetic force and pressure on the billet, were analyzed. The result shows that, in continuous casting with soft coated mold, the electromagnetic pressure on the surface of billet increases with the rising of the power frequency as a logarithmically parabolic function and, with that of inductor current as a parabolic function. The design principle of the soft contacted mold is that 1) the mold structure should be ’more segments and thin slits’; 2) the topside of inductor should be at the same location with the meniscus of molten metal; 3) the inductor should cover the initial solidifying shell of billet.