论文部分内容阅读
“杨辉三角”是指如下一个表:0行 11行 1 12行 1 2 13行 1 3 3 14行 1 4 6 4 15行 1 5 10 10 5 16行 1 6 15 20 15 6 1… ……这个表是我国南宋数学家杨辉首先发现的.由于它的形状是一个三角形,因此叫它为“杨辉三角”.在国外,有人把它叫做“巴斯卡三角形”,他们认为这个表是英国的巴斯卡发现的.其实巴斯卡的发现比杨辉要晚三百多年.杨辉三角的结构特点是:每行首、尾的数字都是1,中间的每个数正好是该数两肩上的两数之和.根据这个特点,我们是容易记住这个表的.杨辉三角是数学之花.它有许多有趣的性质和用途.1“杨辉三角”与“11的方幂”仔细观察“杨辉三角”,不难发现,0行有1=110,1行有11=111,2行有121=112,3行有1331=113,……由此猜测:n行就是11n,这种猜想是正确的.不过要注意的一点是,对第5及以下的各行,要注意进位问题,凡大于或等于10的数必须逢十进一.例如116,第6行的数是1、6、15、20、15、6、1,第三、第四、第五个数进位以后,它就是1771561,而116=1771561.2“杨辉三角”与“2的方幂”现在我们把“杨辉三角”中各行的数分别加起来,得到0行为1.1行为1+1=2.2行为1+2+1=4.3行为1+3+3+1=8.4行为1+4+6+6+4+1=16.……观察这组等式,我们发现各行的结果分别为20、21、22、23、24、…,由此我们可以猜想:“杨辉三角”中的第n行各数之和是2n.这是正确的.