论文部分内容阅读
单样本人脸识别因其在现实生活中的广泛应用而成为人脸识别领域的热门话题。单张训练样本条件下训练样本的缺少和复杂的类内人脸表情、光照、遮挡变化给单样本人脸识别研究带来困难。传统的基于稀疏表示的人脸识别方法需要大量的训练样本构成过完备的字典,因而在单样本条件下识别效果明显下滑。针对这一问题,提出一种基于有监督自编码器的带变化人脸样本生成方法,在保留身份信息的同时自动生成带变化的人脸图像用于单样本条件下的字典扩充,一定程度上缓解了单样本条件下的欠采样问题,弥补了训练集和测试集间的人脸变化信息差异,使得传统的