论文部分内容阅读
气温衍生品是一种用来规避天气风险的新型金融工具,它对能源、农业和旅游业等行业的稳健运行、绿色金融的发展、碳中和目标的实现都具有十分重要的价值。选取我国六个典型城市2009—2018年的日平均气温作为样本数据,利用ELM神经网络模型对气温时间序列进行预测与误差分析,借助蒙特卡洛模拟方法对气温衍生品定价。研究结果表明,ELM神经网络较ARMA模型和BP神经网络气温预测精度有显著提高,可为气温衍生品的定价奠定基础。