论文部分内容阅读
目的开发一种三维(3D)卷积神经网络(CNN)深度学习模型,用于鉴别诊断肺部CT图像的良、恶性结节,并预测肺结节的恶性程度。资料与方法基于3D卷积设计4种3D CNN架构以分析连续多张图片数据。提取图像特征并进行分类。使用美国癌症协会发布的LIDC-IDRI影像数据集进行训练、测试和验证各模型。以受试者工作特征(ROC)曲线下面积(AUC)及其准确度、敏感度和特异度表征各模型的效果。结果在肺部结节和非结节的鉴别诊断中,开发的3D CNN-3模型的ROC曲线AUC最高(0.959),同时具有最高的特异度(0