论文部分内容阅读
摘要:
工业生产过程中排放的温室气体会造成全球变暖现象,但全球变暖与工业排放在时间上具有一定的滞后效应.通过分析地球、大气、太阳三者热平衡体系的辐射换热,建立了地球及其大气的动态数学模型;利用此模型考察了造成地球温度变化的主要原因和变暖滞后的现象.结果表明:工业温室气体的过度排放会造成大气对地球辐射的吸收系数提高,导致地球温度升高;同时,太阳辐射能量增加,地球和大气对太阳辐射吸收增加,导致地球温度升高.结合近年来人为因素造成的地球温度升高现象进行了定量热分析,预测了温室气体CO2体积分数线性增加条件下的地球温度走势.
关键词:
全球变暖; 辐射换热; 滞后现象
中图分类号:TM 124 文献标志码:A
Analysis of dynamic characteristics and hysteresis of global warming
HUANG Xiao-huang1, CUI Guo-min1, ZHANG Zhi-qin1, HUA Ze-zhao1, XU Jia-liang2
(1.Institute of New Energy Science and Technology,University of Shanghai for Science and Technology,
Shanghai 200093,China; 2.Shanghai Meteorological Bureau,Shanghai 200030,China)
Abstract:
The greenhouse gases generated by industrial production processes can result in the global warming.However, compared with the discharge of industrial waste gases, the global warming has a certain lag on time.Through an analysis of radiative heat transfer in the heat balance system of the earth, the atmosphere and the sun, a dynamic, mathematical model was established in this paper.The main reasons of changes in the earth’s temperature and the hysteresis of global warming were analyzed by this model.The results showed that an excessive discharge of industrial greenhouse gases can increase the atmospheric absorption of earth’s radiation and lead to an increase in the earth’s temperature.At the same time, the increase of solar radiation energy can raise the absorption of the earth and the atmosphere to the solar radiation and makes the earth temperature to rise.A quantitative analysis of the earth’s temperature rising phenomenon caused by human factors in recent years was carried out and the earth temperature change trend was predicted under the condition of a linear increase in the volume fraction of greenhouse gase CO2.
Key words:
global warming; radiative heat transfer; hysteresis phenomena
联合国政府间气候变化专门委员会(IPCC)第四次报告[1]表明,工业革命百年以来,全球温度平均升高了0.74±0.18℃.其产生的根源是由于人类活动造成温室气体浓度大幅提高的结果[2-3].地球上的温室气体主要包括H2O、CO2、CH4、N2O、O3以及氟氯烃等.其中水蒸气是体积分数最大的温室气体,但是由于其产生并非人为造成的,因此一般在探讨气候变暖时都不予考虑.而其它的温室气体,其浓度的变化都与人类的活动密切相关,因此是造成地球变暖的主要原因.目前,由于全球变暖的形势变得越来越严峻,由其产生的气候和环境问题也已经逐渐显现,因此,正确预测温室气体浓度及其产生的地球变暖,并据此给出人类排放的控制时间表,是目前解决环境保护与社会发展之间矛盾的首要问题.鉴于此,气象学家采用多种气候模型预测了地球未来的温度趋势,几乎都得到了令人不安的结果:如果不能有效地控制CO2的排放,到2100年地球表面温度可能再升高1.1~6.4℃.这将导致灾难性结果[1,4-5].
但是,尽管各种预测模型都得到了地球未来将升温的结论,然而各种结果的差异却很大.虽然最终的1.1~6.4℃的升温都是不可接受的,但是预测结果差异也表明这些模型的不确定性.同时在具体数值上的差异也是很明显的,例如,比较文献[6]和文献[7]可以看出,有些项目的数据之间存在着较大的差别,如大气层向地面的辐射能量、地球表面向外的辐射能量分别相差9 W·m-2、7 W·m-2.这些都会影响地球表面温度的变化,进而使得预测结果出现很大的差别.究其原因,是由于问题本身的复杂性以及内在机理的不确定性使然.从上述分析来看,一种准确严密的预测模型需依赖于对地球、大气、太阳构成的系统的准确数学建模,才能揭示温室效应产生的全球变暖的阶段性以及最终结果. 鉴于此,本文通过能量守恒原理分析地球、大气、太阳三者热平衡体系的能量平衡关系,基于自动控制理论建立地球及其大气的动态数学模型,考察造成地球温度变化的主要原因及其代价和滞后现象,据此揭示地球升温过程的本质和过程特点.
1 地球及其大气升温的动态数学模型
近年来,由于工业排放的作用,地球大气中的温室气体浓度出现了明显的增加,其中以CO2、CH4和N2O的增加最为明显,这主要是因为工业排放量大,并且三者都具有很长的自然滞留时间的缘故.这些温室气体的增加,无疑将导致大气对于地球辐射温室效应的增强,并且最终导致地球温度的升高.为了考察地球温度随着不同的温室效应变化(由温室气体浓度的变化决定)的规律,以地球和大气为研究对象,建立其温度变化的动态模型.忽略地球表面水蒸气蒸发潜热以及对流换热作用,地球本体得到的能量包括太阳辐射吸收部分以及温室效应造成的大气逆辐射部分,发射的能量是基于自身平均温度的黑体发射力;而对于大气来说,其能量平衡则是太阳辐射以及地球辐射能量的吸收等于其自身的发射.
根据地球及其大气能量收支关系,如果达到平衡,则有
式中,Qout为最终由地球大气系统向外太空辐射的总能量;Qnet,earth,out、Qnet,atm,out分别为地球辐射穿过大气进入太空的能量和大气辐射进入太空的部分,具有如下能量平衡关系
式中,Qearth,emit为地球本身的辐射能量; Qgreenhouse effect为由于大气温室效应吸收的能量; Qatm,emit为大气的辐射能量; Qatmsun,a为大气对太阳辐射的吸收能量; Qearth,emit为地球本身发射能量; Qearthsun,a为地球吸收太阳辐射能量; Qearthatm,a为地球吸收大气辐射能量.
当处于平衡状态时,这些能量维持上述平衡关系.但是一旦某一能量发生变化(一般都来自于发射体的温度变化),这种平衡就将被破坏,从而带来地球或者大气温度的变化,并通过改变其辐射量来平衡热量的变化.
总的来说,地球表面温度Tearth的变化与大气温度Tatm的变化存在以下关系
式中,ΔTearth为地球的温升;ΔTatm为大气的温升;A为常数.
从式(3)可以看出,地球表面的温升与大气的温升在数值上不一定相等,但是存在一定的正比例关系.这里,以“持续升温”模型,得到在外部强迫作用下地球温度升高的动态数学模型为
式中,Qatm,emit为大气温度的函数,表示为f′(Tatm).
由式(6)、式(7)构成了地球表面和大气温度变化的动态方程组,其中Tearth和Tatm为未知量,两者存在着强烈的耦合效应.根据式(6)、式(7),可以揭示地球表面升温的两个主要原因:
(1) αatm-earth提高,此时大气对地球发射的红外辐射的吸收增加,导致更为强烈的温室效应,从而将使地球温度升高.而导致αatm-earth升高的直接作用就是工业温室气体的过度排放,因此这一作用是地球升温的内因;
(2) 地球和大气对太阳辐射吸收Qsun,a提高,其包括地球和大气对太阳辐射吸收的增加.从式(6)和式(7)中可以看出,当太阳辐射增加以后,地球和大气温度都将受到影响.这一作用一般与太阳的活动周期密切相关,属于地球升温的外因.
2 温室气体造成的地球升温的滞后效应分析
由于太阳活动周期具有一定的规律,而且与人类活动没有关系,所以这里只讨论由于温室效应增强带来的地球表面升温的滞后效应.
2.1 地球和大气升温的时间常数
根据自动控制理论,将式(6)和式(7)等号右边的热量差处理扰动作用,则地球表面和大气的升温过程呈现为典型的积分环节特性,两者的传递函数分别为
从式(10)、式(11)可以看出,由于地球和大气的总热容量不同,因此在扰动作用下的地球和大气的升温也将不完全同步,存在一定的相位差.而平衡此不同步作用的方式除了大气与地球之间的辐射传热以外,对流换热将起到更大的作用,这里不作深入讨论.取地球的总质量的1/10参与升温作用,则其质量为5.69×1023 kg,并取其平均比热容为0.85 kJ·kg-1·℃-1,则其时间常数为30.49 a;取大气的总质量为5.136×1018 kg,其平均比热容为1 kJ·kg-1·℃-1,则其时间常数为2.78 h.由时间常数可见,大气和地球动态温度变化具有很大的滞后特性,而相比于大气来说,地球的滞后作用更为明显.
2.2 温室气体浓度升高后的地球温度变化
由于工业革命以来温室气体的浓度逐年升高,导致了其温室效应的逐步提高,这样就破坏了地球和大气系统的热平衡,从而导致地球的升温.鉴于此,将热量扰动与温室气体浓度升高产生的温室效应增强联系起来.以CO2为例,在近50年内其体积分数从3.20×10-4增加到3.80×10-4,假设其增加为线性变化[1],根据大气压缩模型方案[8],得到温室效应增强量ΔQ与距离1960年的时间间隔t的变化关系如图1所示.可见,其总热量基本呈现为线性变化,拟合公式为
将τearth=30 a代入式(15),得到地球在当前CO2体积分数增加情况下地球表面的温度响应,如图2所示.
从图2可知,因为人为的CO2等温室气体排放的增加,地球温度自1960年以来一直呈现上升的趋势,至2010年,气温升高了0.617 ℃,这与IPCC报告给出的数据基本相符;另一方面,由于大气中的CO2体积分数近年来基本呈线性关系变化,地球表面温度响应的滞后特性在未来将被极大地体现出来,其温度的升高在未来多年将得到一定延续,并且会出现升温加速的现象,除非其自身辐射抵消温室效应为止.此时,地球表面温度将维持在一个新的较高的水平,即所谓的“积分保持”作用,除非温室气体体积分数有所下降.因此,如何减少CO2等温室气体的排放问题已经被列入各国政府、联合国会议的首要议题,放在优先考虑的地位,成为全球亟待解决的重大战略课题[9]. 3 结论
基于能量守恒及自动控制原理建立了地球变暖动态数学模型,通过此模型,考察造成地球温度变化的两个主要原因,即:温室气体的过度排放会造成地球升温加剧;太阳辐射能量增强会造成地球一定的温升.在此动态特性基础上,对于地球变暖与温室气体排放时间上的滞后现象进行了分析,得出大气和地球动态温度变化具有很大的滞后特性,大气温度变化滞后时间为2.78 h,地球表面温度变化滞后时间为30.49 a.可见,温室气体的排放,对于全球变暖具有很大的滞后效应.
根据全球变暖动态模型,本文结合现有温室气体CO2的排放水平,预测了地球温度的未来走势.结果表明,根据地球变暖滞后时间常数,可以得到任意时间的地球温度变化.同时,地球环境温度对于温室气体体积分数的响应具有显著的滞后效应,在现有排放水平不变的情况下,地球表面温度仍将进一步升高.
参考文献:
[1] OLOMON S,QIN D,MANNING M,et al.Intergovernmental Panel on Climate Change,Climate Change Physical Science Basis[R].New York:Cambridge University Press,2007.
[2] LE T H,SOMERVILLE R,CUBASCH U,et al.2007:Historical Overview of Climate Change.In:Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R].New York :Cambridge University Press,2007.
[3] FORSTER P,RAMASWAMY V,ARTAXO P,et al.2007:Changes in Atmospheric Constituents and in Radiative Forcing.In:Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R].New York :Cambridge University Press,2007.
[4] MYHRE G,HIGHWOOD E J,SHINE K P,et al.New estimates of radiative forcing due to well mixed greenhouse gases [J].Geophysical Research Letters,1998,25(14):2715-2718.
[5] HAIGH J D,WINNING A R,TOUMI R,et al.An influence of solar spectral variations on radiative forcing of climate[J].Nature,2010,467(7):696-699.
[6] KIEHL J T,KEVIN E T.Earth’s annual global mean energy budget[J].Bulletin of the American Meteorological Society,1997,78(2):197-208.
[7] KEVIN E T,JOHN T F,JEFFREY K.Earth’s global energy budget[J].Bulletin of the American Meteorological Society,2009,90(3):311-323.
[8] 胡金鹏,崔国民,黄晓璜,等.温室效应对温室气体浓度变化的敏感性分析[J].工程热物理学报,2012,33(8):1380-1382.
[9] 栾健,陈德珍.二氧化碳减排技术与趋势[J].能源研究与信息,2009,25(2):88-93.
工业生产过程中排放的温室气体会造成全球变暖现象,但全球变暖与工业排放在时间上具有一定的滞后效应.通过分析地球、大气、太阳三者热平衡体系的辐射换热,建立了地球及其大气的动态数学模型;利用此模型考察了造成地球温度变化的主要原因和变暖滞后的现象.结果表明:工业温室气体的过度排放会造成大气对地球辐射的吸收系数提高,导致地球温度升高;同时,太阳辐射能量增加,地球和大气对太阳辐射吸收增加,导致地球温度升高.结合近年来人为因素造成的地球温度升高现象进行了定量热分析,预测了温室气体CO2体积分数线性增加条件下的地球温度走势.
关键词:
全球变暖; 辐射换热; 滞后现象
中图分类号:TM 124 文献标志码:A
Analysis of dynamic characteristics and hysteresis of global warming
HUANG Xiao-huang1, CUI Guo-min1, ZHANG Zhi-qin1, HUA Ze-zhao1, XU Jia-liang2
(1.Institute of New Energy Science and Technology,University of Shanghai for Science and Technology,
Shanghai 200093,China; 2.Shanghai Meteorological Bureau,Shanghai 200030,China)
Abstract:
The greenhouse gases generated by industrial production processes can result in the global warming.However, compared with the discharge of industrial waste gases, the global warming has a certain lag on time.Through an analysis of radiative heat transfer in the heat balance system of the earth, the atmosphere and the sun, a dynamic, mathematical model was established in this paper.The main reasons of changes in the earth’s temperature and the hysteresis of global warming were analyzed by this model.The results showed that an excessive discharge of industrial greenhouse gases can increase the atmospheric absorption of earth’s radiation and lead to an increase in the earth’s temperature.At the same time, the increase of solar radiation energy can raise the absorption of the earth and the atmosphere to the solar radiation and makes the earth temperature to rise.A quantitative analysis of the earth’s temperature rising phenomenon caused by human factors in recent years was carried out and the earth temperature change trend was predicted under the condition of a linear increase in the volume fraction of greenhouse gase CO2.
Key words:
global warming; radiative heat transfer; hysteresis phenomena
联合国政府间气候变化专门委员会(IPCC)第四次报告[1]表明,工业革命百年以来,全球温度平均升高了0.74±0.18℃.其产生的根源是由于人类活动造成温室气体浓度大幅提高的结果[2-3].地球上的温室气体主要包括H2O、CO2、CH4、N2O、O3以及氟氯烃等.其中水蒸气是体积分数最大的温室气体,但是由于其产生并非人为造成的,因此一般在探讨气候变暖时都不予考虑.而其它的温室气体,其浓度的变化都与人类的活动密切相关,因此是造成地球变暖的主要原因.目前,由于全球变暖的形势变得越来越严峻,由其产生的气候和环境问题也已经逐渐显现,因此,正确预测温室气体浓度及其产生的地球变暖,并据此给出人类排放的控制时间表,是目前解决环境保护与社会发展之间矛盾的首要问题.鉴于此,气象学家采用多种气候模型预测了地球未来的温度趋势,几乎都得到了令人不安的结果:如果不能有效地控制CO2的排放,到2100年地球表面温度可能再升高1.1~6.4℃.这将导致灾难性结果[1,4-5].
但是,尽管各种预测模型都得到了地球未来将升温的结论,然而各种结果的差异却很大.虽然最终的1.1~6.4℃的升温都是不可接受的,但是预测结果差异也表明这些模型的不确定性.同时在具体数值上的差异也是很明显的,例如,比较文献[6]和文献[7]可以看出,有些项目的数据之间存在着较大的差别,如大气层向地面的辐射能量、地球表面向外的辐射能量分别相差9 W·m-2、7 W·m-2.这些都会影响地球表面温度的变化,进而使得预测结果出现很大的差别.究其原因,是由于问题本身的复杂性以及内在机理的不确定性使然.从上述分析来看,一种准确严密的预测模型需依赖于对地球、大气、太阳构成的系统的准确数学建模,才能揭示温室效应产生的全球变暖的阶段性以及最终结果. 鉴于此,本文通过能量守恒原理分析地球、大气、太阳三者热平衡体系的能量平衡关系,基于自动控制理论建立地球及其大气的动态数学模型,考察造成地球温度变化的主要原因及其代价和滞后现象,据此揭示地球升温过程的本质和过程特点.
1 地球及其大气升温的动态数学模型
近年来,由于工业排放的作用,地球大气中的温室气体浓度出现了明显的增加,其中以CO2、CH4和N2O的增加最为明显,这主要是因为工业排放量大,并且三者都具有很长的自然滞留时间的缘故.这些温室气体的增加,无疑将导致大气对于地球辐射温室效应的增强,并且最终导致地球温度的升高.为了考察地球温度随着不同的温室效应变化(由温室气体浓度的变化决定)的规律,以地球和大气为研究对象,建立其温度变化的动态模型.忽略地球表面水蒸气蒸发潜热以及对流换热作用,地球本体得到的能量包括太阳辐射吸收部分以及温室效应造成的大气逆辐射部分,发射的能量是基于自身平均温度的黑体发射力;而对于大气来说,其能量平衡则是太阳辐射以及地球辐射能量的吸收等于其自身的发射.
根据地球及其大气能量收支关系,如果达到平衡,则有
式中,Qout为最终由地球大气系统向外太空辐射的总能量;Qnet,earth,out、Qnet,atm,out分别为地球辐射穿过大气进入太空的能量和大气辐射进入太空的部分,具有如下能量平衡关系
式中,Qearth,emit为地球本身的辐射能量; Qgreenhouse effect为由于大气温室效应吸收的能量; Qatm,emit为大气的辐射能量; Qatmsun,a为大气对太阳辐射的吸收能量; Qearth,emit为地球本身发射能量; Qearthsun,a为地球吸收太阳辐射能量; Qearthatm,a为地球吸收大气辐射能量.
当处于平衡状态时,这些能量维持上述平衡关系.但是一旦某一能量发生变化(一般都来自于发射体的温度变化),这种平衡就将被破坏,从而带来地球或者大气温度的变化,并通过改变其辐射量来平衡热量的变化.
总的来说,地球表面温度Tearth的变化与大气温度Tatm的变化存在以下关系
式中,ΔTearth为地球的温升;ΔTatm为大气的温升;A为常数.
从式(3)可以看出,地球表面的温升与大气的温升在数值上不一定相等,但是存在一定的正比例关系.这里,以“持续升温”模型,得到在外部强迫作用下地球温度升高的动态数学模型为
式中,Qatm,emit为大气温度的函数,表示为f′(Tatm).
由式(6)、式(7)构成了地球表面和大气温度变化的动态方程组,其中Tearth和Tatm为未知量,两者存在着强烈的耦合效应.根据式(6)、式(7),可以揭示地球表面升温的两个主要原因:
(1) αatm-earth提高,此时大气对地球发射的红外辐射的吸收增加,导致更为强烈的温室效应,从而将使地球温度升高.而导致αatm-earth升高的直接作用就是工业温室气体的过度排放,因此这一作用是地球升温的内因;
(2) 地球和大气对太阳辐射吸收Qsun,a提高,其包括地球和大气对太阳辐射吸收的增加.从式(6)和式(7)中可以看出,当太阳辐射增加以后,地球和大气温度都将受到影响.这一作用一般与太阳的活动周期密切相关,属于地球升温的外因.
2 温室气体造成的地球升温的滞后效应分析
由于太阳活动周期具有一定的规律,而且与人类活动没有关系,所以这里只讨论由于温室效应增强带来的地球表面升温的滞后效应.
2.1 地球和大气升温的时间常数
根据自动控制理论,将式(6)和式(7)等号右边的热量差处理扰动作用,则地球表面和大气的升温过程呈现为典型的积分环节特性,两者的传递函数分别为
从式(10)、式(11)可以看出,由于地球和大气的总热容量不同,因此在扰动作用下的地球和大气的升温也将不完全同步,存在一定的相位差.而平衡此不同步作用的方式除了大气与地球之间的辐射传热以外,对流换热将起到更大的作用,这里不作深入讨论.取地球的总质量的1/10参与升温作用,则其质量为5.69×1023 kg,并取其平均比热容为0.85 kJ·kg-1·℃-1,则其时间常数为30.49 a;取大气的总质量为5.136×1018 kg,其平均比热容为1 kJ·kg-1·℃-1,则其时间常数为2.78 h.由时间常数可见,大气和地球动态温度变化具有很大的滞后特性,而相比于大气来说,地球的滞后作用更为明显.
2.2 温室气体浓度升高后的地球温度变化
由于工业革命以来温室气体的浓度逐年升高,导致了其温室效应的逐步提高,这样就破坏了地球和大气系统的热平衡,从而导致地球的升温.鉴于此,将热量扰动与温室气体浓度升高产生的温室效应增强联系起来.以CO2为例,在近50年内其体积分数从3.20×10-4增加到3.80×10-4,假设其增加为线性变化[1],根据大气压缩模型方案[8],得到温室效应增强量ΔQ与距离1960年的时间间隔t的变化关系如图1所示.可见,其总热量基本呈现为线性变化,拟合公式为
将τearth=30 a代入式(15),得到地球在当前CO2体积分数增加情况下地球表面的温度响应,如图2所示.
从图2可知,因为人为的CO2等温室气体排放的增加,地球温度自1960年以来一直呈现上升的趋势,至2010年,气温升高了0.617 ℃,这与IPCC报告给出的数据基本相符;另一方面,由于大气中的CO2体积分数近年来基本呈线性关系变化,地球表面温度响应的滞后特性在未来将被极大地体现出来,其温度的升高在未来多年将得到一定延续,并且会出现升温加速的现象,除非其自身辐射抵消温室效应为止.此时,地球表面温度将维持在一个新的较高的水平,即所谓的“积分保持”作用,除非温室气体体积分数有所下降.因此,如何减少CO2等温室气体的排放问题已经被列入各国政府、联合国会议的首要议题,放在优先考虑的地位,成为全球亟待解决的重大战略课题[9]. 3 结论
基于能量守恒及自动控制原理建立了地球变暖动态数学模型,通过此模型,考察造成地球温度变化的两个主要原因,即:温室气体的过度排放会造成地球升温加剧;太阳辐射能量增强会造成地球一定的温升.在此动态特性基础上,对于地球变暖与温室气体排放时间上的滞后现象进行了分析,得出大气和地球动态温度变化具有很大的滞后特性,大气温度变化滞后时间为2.78 h,地球表面温度变化滞后时间为30.49 a.可见,温室气体的排放,对于全球变暖具有很大的滞后效应.
根据全球变暖动态模型,本文结合现有温室气体CO2的排放水平,预测了地球温度的未来走势.结果表明,根据地球变暖滞后时间常数,可以得到任意时间的地球温度变化.同时,地球环境温度对于温室气体体积分数的响应具有显著的滞后效应,在现有排放水平不变的情况下,地球表面温度仍将进一步升高.
参考文献:
[1] OLOMON S,QIN D,MANNING M,et al.Intergovernmental Panel on Climate Change,Climate Change Physical Science Basis[R].New York:Cambridge University Press,2007.
[2] LE T H,SOMERVILLE R,CUBASCH U,et al.2007:Historical Overview of Climate Change.In:Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R].New York :Cambridge University Press,2007.
[3] FORSTER P,RAMASWAMY V,ARTAXO P,et al.2007:Changes in Atmospheric Constituents and in Radiative Forcing.In:Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R].New York :Cambridge University Press,2007.
[4] MYHRE G,HIGHWOOD E J,SHINE K P,et al.New estimates of radiative forcing due to well mixed greenhouse gases [J].Geophysical Research Letters,1998,25(14):2715-2718.
[5] HAIGH J D,WINNING A R,TOUMI R,et al.An influence of solar spectral variations on radiative forcing of climate[J].Nature,2010,467(7):696-699.
[6] KIEHL J T,KEVIN E T.Earth’s annual global mean energy budget[J].Bulletin of the American Meteorological Society,1997,78(2):197-208.
[7] KEVIN E T,JOHN T F,JEFFREY K.Earth’s global energy budget[J].Bulletin of the American Meteorological Society,2009,90(3):311-323.
[8] 胡金鹏,崔国民,黄晓璜,等.温室效应对温室气体浓度变化的敏感性分析[J].工程热物理学报,2012,33(8):1380-1382.
[9] 栾健,陈德珍.二氧化碳减排技术与趋势[J].能源研究与信息,2009,25(2):88-93.