论文部分内容阅读
为了提高风电场风速短期预测的精确性,提出了基于混沌理论的径向基神经网络预测。通过对风速时间序列关联维数及Lyapunov指数的计算,证实了风速时间序列混沌现象的存在。几种典型的求取延迟时间和嵌入维数算法的预测结果对比表明,基于自相关法一假近邻法的相空间重构RBF神经网络的预测效果比较理想。将基于混沌理论的RBF神经预测方法同传统的Volterra级数预测方法相比较的仿真结果表明,基于混沌理论的RBF神经预测方法具有模型简单、预测精度高的优点。