论文部分内容阅读
决策树是数据挖掘中的一种重要分类方法。在此以粗糙集理论中的正域为启发式函数,设计了一种新的、有效的决策树构造方法。该算法具有较大的灵活性,能从测试属性空间逐次删除已使用过的属性。避免对这些属性进行重复测试,减少测试空间,降低了树的复杂性,从而提高了分类效率。最后,实例验证了算法的可行性与有效性。