论文部分内容阅读
为实现生鲜肉水分含量的快速无损检测,在波长350-1700nm范围内采集生鲜猪肉98个样本的可见近红外反射光谱。经中值平滑滤波、多元散射校正和一阶微分复合预处理方法对原始光谱进行降噪处理。将样本数据随机分为训练集和测试集,以训练集交叉验证网格搜索法确定最佳惩罚参数,利用径向基核函数的支持向量机算法建立了支持向量机预测模型,并与偏最小二乘回归建模法进行比较。用径向基核函数的支持向量机算法所建模型对生鲜肉水分含量进行预测的结果为:训练集的预测相关系数Rc为0.96、标准差SEC为0.32,测试集的预测相关系数