论文部分内容阅读
特定类的思想是将传统的多类特征提取和识别任务转化为多个两类问题,由此产生了类不平衡问题,影响最优鉴别特征的提取。为了解决该问题,文中提出了一种主动学习平衡类鉴别分析(ALCBD)方法。对于每个特定类,ALCBD从其对应的大类中选取它的部分近邻样本构成特定类的近邻样本集,接着将这个近邻样本集划分成与特定类相同样本数的多个子集,然后根据主动学习的思想挑选最优子集与特定类结合成为新样本集,最后用传统的线性鉴别分析(LDA)方法得到鉴别向量。基于USPS和Honda/UCSD数据库的实验表明ALCBD方法能