论文部分内容阅读
As a major agricultural country, China suffers from severe meteorological drought almost every year. Previous studies have applied a single threshold to identify the onset of drought events, which may cause problems to adequately characterize long-term patts of droughts. This study analyzes meteorological droughts in China based on a set of daily gridded (0.5° 90.5°) precipitation data from 1961 to 2014. By using a multi-threshold run theory approach to evaluate the monthly percentage of precipitation anomalies index (Pa), a drought events sequence was identified at each grid cell. The spatiotem-poral variations of drought in China were further investi-gated based on statistics of the frequency, duration, severity, and intensity of all drought events. Analysis of the results show that China has five distinct meteorological drought-prone regions: the Huang-Huai-Hai Plain, North-east China, Southwest China, South China coastal region, and Northwest China. Seasonal analysis further indicates that there are evident spatial variations in the seasonal contribution to regional drought. But overall, most contri-bution to annual drought events in China come from the winter. Decadal variation analysis suggests that most of China’s water resource regions have undergone an increase in drought frequency, especially in the Liaohe, Haihe, and Yellow River basins, although drought duration and severity clearly have decreased after the 1960s.