论文部分内容阅读
针对粒子群优化(PSO)算法中适应度函数不可变的问题,提出一种改进时变PSO算法(TVPSO),其适应度函数可变,利用TVPSO对最小二乘支持向量机(LSSVM)的参数进行优化,避免了人为选择参数的盲目性,提高了预测模型的在线预测能力。建立基于TVPSO-LSSVM的连续预报模型,充分利用LSSVM的结构风险最小化与TVPSO粒子群算法全局、时变的特性,对非线性较强的混沌时间序列进行连续预报。仿真结果表明,该法运算速度快,适用于在线预报。