论文部分内容阅读
为较好平衡粒子群算法中全局搜索能力与局部搜索能力,分析了PSO(Particle Swarm Optimization)算法中的惯性权重与种群规模、粒子适应度以及搜索空间维度的关系,并把粒子惯性权重定义为这三者的函数。通过在每次迭代后更新每个粒子的惯性权重,实现了自适应调整全局搜索能力与局部搜索能力,并结合动态管理种群的策略提出了改进的粒子群算法。通过在多个常用测试函数上与已有惯性权重调整算法测试比较,证明新算法具有较强的全局寻优能力与较高的搜索效率。