论文部分内容阅读
提出了一种结合灰色关联度和模糊熵的分割算法。传统模糊熵分割算法的隶属度函数只利用了图像灰度值的统计信息,因此算法容易受噪声或光照不均的影响。在隶属度函数的计算中,引入灰色关联度来表示像素的空间信息,能够更加准确地反映像素属于目标或背景的影响。由理想目标或背景点组成参考序列,待处理像素及其邻域组成比较序列,计算比较序列与参考序列之间的灰色关联度,并修正隶属度函数。对实际图像的测试实验表明,结合灰色关联分析的最大模糊熵分割算法比传统模糊熵分割算法具有更强的噪声抑制能力和更准确的分割结果。