基于金融指标对中国GDP的混频预测分析

来源 :金融研究 | 被引量 : 0次 | 上传用户:star010lxl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文在实时数据基础上选取金融变量作为预测因子并通过混频数据抽样(MIDAS)模型对GDP增长率进行短期预测。结果表明:短期预测时MIDAS模型预测效果甚佳而且嵌入自回归项的MIDAS模型明显降低预测误差;数据修正对MIDAS模型的预测精度有负面影响;货币供应量等预测因子在包含自回归项MIDAS模型中预测精度较高,投资和出口依旧是拉动我国经济增长的重要因素;SPA检验及组合MIDAS模型的较好预测精度说明组合MIDAS模型预测能力占优。 This paper selects financial variables as predictors on the basis of real-time data and forecasts short-term GDP growth rate through the mixed data sampling (MIDAS) model. The results show that the MIDAS model is very effective in short-term prediction and the MIDAS model embedded in the regression model significantly reduces the prediction error; the data correction has a negative impact on the prediction accuracy of the MIDAS model; predictors such as the money supply in the MIDAS model The prediction accuracy of SPA test and combined MIDAS model shows that the combined MIDAS model has predominant ability of forecasting.
其他文献
间质成纤维细胞位于实质细胞周围,参与细胞外基质(extracellular matrix,ECM)分泌。该细胞通常处于静止状态,但在炎症和肿瘤等疾病发生时异常活化。成纤维细胞活化受多种基因
目的:翻译英文版16条目骨质疏松症患者健康相关生存质量评估问卷(16-item Assessment o f Health-Related Quality of Life in Osteoporosis,ECOS-16),并验证其在骨质疏松患者中