论文部分内容阅读
为解决纵向数据相似性比较问题,对基于扩展范式距离的纵向数据相似性度量方法进行了研究。使用基于粗糙集理论的核约简对属性变量进行选择,移去数据集中的冗余属性;用扩展范式距离进行数据项问的度量。为计算两数据项之间的相似性,把相关度特征值当作权重,通过扩展范数距离比较项与项相应主元之间的相似性。与其它3种度最方法的对比实验显示,所提出的纵向数据相似度测量方法是有效可行的,且在信息检索时的Recall与Precision优于其它同类方法。