论文部分内容阅读
研究了Orlicz空间内一类有理函数逼近问题.在被逼近函数改变l次符号的条件下,借助Steklov平均函数,利用修正的Jackson核,Hardy-Littlewood极大函数,Cauchy-Schwarz不等式等工具,给出了逼近阶的一种Jackson型估计.考虑到Orlicz空间内拓扑结构的复杂性,本文得到的结果比连续函数空间和Lp空间内同类问题的研究结果具有更广泛的意义.