论文部分内容阅读
求函数的极(最)值,是初等数学中最常见的问题,也是初等数学教学的重点和难点之一。求极(最)值的方法很多,本文就形如y=(x~2+a_1x+b_1)~(1/2)+(x~2+a_2x+b_2)~(1/2)类函数极(最)值的求法作祖浅探讨,供大家在教学中参考。 y=(x~2+a_1x+b_1)~(1/2)+(x~2+a_2x+b_2)~(1/2) 中的两个被开力式都是二次项系数大于零的
Finding the extreme (most) value of a function is the most common problem in elementary mathematics and one of the key and difficult aspects of elementary mathematics teaching. There are many ways to find the polar (most) value. This paper is like y=(x~2+a_1x+b_1)~(1/2)+(x~2+a_2x+b_2)~(1/2) The (most) value of the method for the ancestral discussion, for everyone in the teaching reference. The two open forces in y=(x~2+a_1x+b_1)~(1/2)+(x~2+a_2x+b_2)~(1/2) are quadratic coefficients greater than zero.