论文部分内容阅读
当观测数据中存在粗差时,使用经典的最小二乘算法往往不能得到高精度的参数解,此时需要使用具有抗差估计的算法。基于验后方差的选权迭代法,克服了单位权方差未知或者权函数靠经验选取的情况,利用验后方差检验求出方差异常大(即含粗差)的观测值,然后通过不断的迭代,使含粗差的权逐渐趋于一个较小的数,最终实现粗差的探测和改正。结合工程实例,分别比较了不含粗差和含粗差的情况下,利用经典最小二乘法与本文所提的基于验后方差原理的选权迭代法进行平差,结果表明,二者的平差结果相差在1mm以内,解算精度相当。