论文部分内容阅读
提出了一个估计数控机床固有误差的新方法.与已有利用动态最小二乘(MLS)的方法相比,采用径向基函数(RBF)直接对已有数据进行拟合估计,大大提高了计算效率.还观察到,RBF方法在某个采样半径下误差估计精度总是优于MLS方法,而大于这个采样半径后则MLS方法较好.由此提出了穿越半径的概念与一种基于RBF方法与MLS方法的混合方法,以得到更好的误差估计.实验结果证实了新方法的有效性.
A new method to estimate the inherent error of CNC machine tools is proposed.Comparing with the existing methods using Dynamic Least Squares (MLS), the Radial Basis Function (RBF) is used to estimate the existing data directly, which greatly improves the calculation Efficiency.It is also observed that the error estimation accuracy of the RBF method is always better than that of the MLS method at a sampling radius and the MLS method is better than the sampling radius.The proposed concept of the crossing radius and the RBF method And the MLS method to get a better error estimation.The experimental results confirm the effectiveness of the new method.