论文部分内容阅读
摘要:本文对我国现有城市垃圾填埋场渗滤液的处理工艺进行了介绍、分析和探讨,强调了脱氮工艺、膜深度处理和浓缩液问题的重要性,总结了各种处理工艺的优缺点,提出了渗滤液处理工艺路线的选择原则和组合方式。
关键词:垃圾渗滤液 浓缩液 处理工艺 现状
我国有关部门颁布了新的《生活垃圾填埋场污染控制标准》(GB16889-2008),并规定2011年7月11日后,现有及新建的生活垃圾填埋场都应自行处理渗滤液,且执行新规定的水污染排放浓度限值标准。然而, 我国在现今的渗滤液处理技术之中却仍有许多待解决问题,如:出水总氮的能否稳定达标、由于回灌引起的毒素和盐分累积、浓缩液的处理以及系统内各环节之间的互相制约关系等。因此,如何能选择的一套合理可行的渗滤液处理工艺路线,同时又满足我国所提倡的低能耗、低污染、低排放的要求是垃圾渗滤液技术发展的方向。
一、垃圾渗滤液的特点
垃圾渗滤液是污水处理领域内最为复杂和难处理的一类废水,其成分和水量与填埋场垃圾成份、垃圾处理规模、降雨量、气候温度、填埋操作工艺等多方面因素密切相关。
1. 1 水质的不可逆变化
渗滤液水质随着填埋年限的增长逐年变化,COD、BOD呈现不断降低趋势,而氨氮却维持在较高水平,营养比例严重失调。如果采用了渗滤液回灌方式处理渗滤液或浓缩液,则可能存在填埋系统内的盐分及其他不可降解毒物的累积问题。
1.2 水量的不稳定性
渗滤液通常一年内各季节水量差异很大,通常需要大容积的调节池以调节水量,否则将对渗滤液处理厂造成冲击负荷,影响系统运行稳定。随着填埋年份和垃圾量的逐年增长,渗滤液的全年平均处理量也将发生较大的变化,通常需要对渗滤液处理厂进行改建或扩建。
二、渗滤液处理的工艺组合
渗滤液处理技术的发展历程就是针对国家排放标准的技术更新及提高的过程。
2.1 厌氧 + 好氧生化处理
80年代中后期至90年代的渗滤液处理技术处于摸索阶段,主要针对污水中有机物进行去除,通常采用厌、好氧结合的生化处理工艺为主,出水基本可以达到污水综合排放标准的三级标准。目前的针对GB16889-2008的渗滤液处理厂改造项目多属于此类厂。
2 .2 氨吹脱 + 生化处理 + 混凝物化
90年代后期,旧标准GB16889-1997的出台将垃圾渗滤液处理排放标准定为三个级别,部分已建的渗滤液处理厂为此进行了改造,主要以增加物化处理单元为主,当时广州大田山渗滤液处理厂改造采用的主体工艺为“氨吹脱+生化处理+混凝物化”,一般能达到排放标准的二级标准。但是氨吹脱产生的氨气和装置的结构问题制约了此工艺路线。
2.3 上流式厌氧污泥床(UASB)+SBR+CMF+反渗透(RO)
此工艺是我国渗滤液处理具有标杆意义的广州兴丰生活垃圾处理场渗滤液处理系统首期工程的主体工艺。它将膜处理技术引入国内的渗滤液处理领域,生化处理与膜技术结合的处理工艺逐步被推广应用。由于采用了反渗透膜分离技术,渗滤液处理出水能稳定达到一级标准甚至回用水要求。通过在长期的运行、研究和总结,其成功之处以及暴露的问题都为全国渗滤液处理技术发展和探索迈出了重要的一步。
2.4 膜生物反应器(MBR)+ 反渗透(RO)/ 纳滤(NF)
它与2.3工艺类似,是通过多方面的的改进和总结得出的目前国内最为成熟的渗滤液处理工艺。随着膜深度处理技术的发展和推广,此工艺的投资成本也在逐渐降低。
2.4.1 厌氧单元的取舍
填埋场前期较为新鲜的渗滤液可生化性高,采用厌氧单元可减小好氧单元的处理负荷和池容,降低系统运行费用。但对已运行了数年的填埋场而言,水可生化性逐渐降低,高氨氮导致好氧生化系统的硝化和反硝化进程需要较多的碳源,如果再采用厌氧处理,反而会导致好氧生化单元碳源不足。因此,现在许多渗滤液处理厂舍去了厌氧处理环节。
2.4.2 MBR膜生物反应器的应用与改进
MBR膜生化反应器技术采用超滤技术取代传统的二沉池,同时又可以作为后续反渗透(RO)/纳滤(NF)的预处理工序。超滤对微生物完全截留使生化反应器内的污泥浓度从传统活性污泥法的3~5g/L提高到10g/L~30g/L,从而提高了反应器的容积负荷,足以应对高浓度的COD、BOD和总氮的处理需求,占地也大大减少。通常渗滤液处理厂的用地都十分有限,MBR工艺凭借其高效处理和节省占地在渗滤液处理中得到很大的推广和应用。
针对GB16889-2008对氨氮、总氮要求排放值分别为25mgL、40mgL(特别地区为8mgL、20mgL),要求生化部分总氮的去除率是应该达到90%以上,否则后续的膜深度处理难以达到出水标准。要达到高的脱氮效率可以采用复合MBR工艺(有后加碳源的两级A/O-MBR工艺)。碳源选择上,如厂区附近有粪便水、新鲜渗滤液等的可生化性高的污水可考虑作为廉价碳源,如无则需要外購碳源,价格较为昂贵。
2.4.3 反渗透(RO)和纳滤(NF)的应用与组合
反渗透可截留几乎所有污染物,仅有水、少数极小分子和低价离子能通过反渗透膜,对生化部分的要求相对NF低很多,因此,反渗透是确保渗滤液稳定达标排放的一道坚固防线。但是,截留率越高就意味着RO浓缩液的问题更加难解决。
纳滤对污染物的截留能力不及反渗透,要求生化部分对总氮的去除率达到99%以上,能耗和投资都付出了较大的代价,否则出水难以保证达标。但NF对一价盐离子不作截留,可把不可降解的大分子有机物截留却使盐份随出水排出,因此纳滤对采用回灌措施的填埋场可缓解盐分的富集。此外,节约运行成本较低,反渗透操作压力一般在0.3MPa~0.6MPa,而纳滤为0.07MPa左右,同时NF的产水率也比RO高。
选择反渗透还是纳滤一直都是许多业主为难的问题,其选择与当地政策以及浓缩液的处理政策有关。在建的长沙市渗滤液处理改造工程采用的就是纳滤和反渗透作配比组合应用。 2.5 MVC蒸發处理工艺
机械压缩蒸发MVC处理工艺是一种用纯物化方式进行液体浓缩的装置。MVC蒸发浓缩技术理论上可行,但国内仍未有稳定运行的实例,其结垢和清洗问题、反应器的材质及寿命、蒸馏液中的氨后续处理,药剂的消耗都是有待解决的突破口。需要指出的是MVC蒸发处理工艺也会产生浓缩液,其浓缩液的去向与处理也是问题。
三、浓缩液的处理
目前,许多填埋场采用回灌方式处理渗滤液或浓缩液,导致不可降解有机物和盐分在系统内不断积累,最终将会导致生化系统和膜处理系统的崩溃。随着回灌的弊端日益显现,浓缩液的去向和处理问题变得十分迫切。越来越多业主明确禁止浓缩液回灌,并且要求提出切实可操作的处理措施。理论上说,蒸发工艺用于处理浓缩液是可行的,而非直接处理渗滤液原液,从生态系统物质循环的角度考虑,生化部分可将大部分C、H、O、N元素回归大自然,剩下的不可降解有毒性的浓缩液则采用蒸发技术进行高度浓缩最终固化填埋;浓缩液也可通过高效絮凝沉淀去除大部分有机物和盐分后通过多级氧化改变污水的可生化性回流生化系统。这两项技术仍未有已成功运行的实例。
四、结语和建议
渗滤液处理工艺路线的设计需从填埋场系统整体考虑,应满足:可抗高的水质、水量冲击负荷;高效的有机物去除和脱氮能力;高的运行稳定性;较低的运行和能耗;浓缩液的尽可能减量化等,且注意填埋场系统内各个环节的相互制约关系,避免恶性循环。
膜生物反应器(MBR)+反渗透(RO)/纳滤(NF)工艺是目前最为成熟和稳定的渗滤液处理工艺。采用后加碳源的两级AO复合MBR处理技术可使可生化性较差的渗滤液在生化部分的脱氮效率达到90%以上,保证后续膜深度处理的效果,使出水稳定达标。
受到技术、政策和标准的限制,如何在厂内解决浓缩液的处理是一个更加棘手的问题,需要更多业者的探索与实践,为浓缩液找到一条合理的出路。■
参考文献
[1]刘疆鹰等.大型垃圾填埋场渗滤液COD的衰减规律[J].同济大学学报,2000,28(3).
[2]袁维芳.反渗透法处理城市垃圾填埋场渗滤液[J].水处理技术,1997,23(6).
[3]杨协栋等.新型MBR工艺对垃圾渗滤液TN去除的研究[J].四川环境 ,2007,26(4).
[4]梅特卡夫等.废水处理工程处理及回用(第4版)[M].北京:化学工业出版社,2004,6.
[5]张自杰.排水工程下册(第4版)[M].北京:中国建筑工业出版社,2000,6.
关键词:垃圾渗滤液 浓缩液 处理工艺 现状
我国有关部门颁布了新的《生活垃圾填埋场污染控制标准》(GB16889-2008),并规定2011年7月11日后,现有及新建的生活垃圾填埋场都应自行处理渗滤液,且执行新规定的水污染排放浓度限值标准。然而, 我国在现今的渗滤液处理技术之中却仍有许多待解决问题,如:出水总氮的能否稳定达标、由于回灌引起的毒素和盐分累积、浓缩液的处理以及系统内各环节之间的互相制约关系等。因此,如何能选择的一套合理可行的渗滤液处理工艺路线,同时又满足我国所提倡的低能耗、低污染、低排放的要求是垃圾渗滤液技术发展的方向。
一、垃圾渗滤液的特点
垃圾渗滤液是污水处理领域内最为复杂和难处理的一类废水,其成分和水量与填埋场垃圾成份、垃圾处理规模、降雨量、气候温度、填埋操作工艺等多方面因素密切相关。
1. 1 水质的不可逆变化
渗滤液水质随着填埋年限的增长逐年变化,COD、BOD呈现不断降低趋势,而氨氮却维持在较高水平,营养比例严重失调。如果采用了渗滤液回灌方式处理渗滤液或浓缩液,则可能存在填埋系统内的盐分及其他不可降解毒物的累积问题。
1.2 水量的不稳定性
渗滤液通常一年内各季节水量差异很大,通常需要大容积的调节池以调节水量,否则将对渗滤液处理厂造成冲击负荷,影响系统运行稳定。随着填埋年份和垃圾量的逐年增长,渗滤液的全年平均处理量也将发生较大的变化,通常需要对渗滤液处理厂进行改建或扩建。
二、渗滤液处理的工艺组合
渗滤液处理技术的发展历程就是针对国家排放标准的技术更新及提高的过程。
2.1 厌氧 + 好氧生化处理
80年代中后期至90年代的渗滤液处理技术处于摸索阶段,主要针对污水中有机物进行去除,通常采用厌、好氧结合的生化处理工艺为主,出水基本可以达到污水综合排放标准的三级标准。目前的针对GB16889-2008的渗滤液处理厂改造项目多属于此类厂。
2 .2 氨吹脱 + 生化处理 + 混凝物化
90年代后期,旧标准GB16889-1997的出台将垃圾渗滤液处理排放标准定为三个级别,部分已建的渗滤液处理厂为此进行了改造,主要以增加物化处理单元为主,当时广州大田山渗滤液处理厂改造采用的主体工艺为“氨吹脱+生化处理+混凝物化”,一般能达到排放标准的二级标准。但是氨吹脱产生的氨气和装置的结构问题制约了此工艺路线。
2.3 上流式厌氧污泥床(UASB)+SBR+CMF+反渗透(RO)
此工艺是我国渗滤液处理具有标杆意义的广州兴丰生活垃圾处理场渗滤液处理系统首期工程的主体工艺。它将膜处理技术引入国内的渗滤液处理领域,生化处理与膜技术结合的处理工艺逐步被推广应用。由于采用了反渗透膜分离技术,渗滤液处理出水能稳定达到一级标准甚至回用水要求。通过在长期的运行、研究和总结,其成功之处以及暴露的问题都为全国渗滤液处理技术发展和探索迈出了重要的一步。
2.4 膜生物反应器(MBR)+ 反渗透(RO)/ 纳滤(NF)
它与2.3工艺类似,是通过多方面的的改进和总结得出的目前国内最为成熟的渗滤液处理工艺。随着膜深度处理技术的发展和推广,此工艺的投资成本也在逐渐降低。
2.4.1 厌氧单元的取舍
填埋场前期较为新鲜的渗滤液可生化性高,采用厌氧单元可减小好氧单元的处理负荷和池容,降低系统运行费用。但对已运行了数年的填埋场而言,水可生化性逐渐降低,高氨氮导致好氧生化系统的硝化和反硝化进程需要较多的碳源,如果再采用厌氧处理,反而会导致好氧生化单元碳源不足。因此,现在许多渗滤液处理厂舍去了厌氧处理环节。
2.4.2 MBR膜生物反应器的应用与改进
MBR膜生化反应器技术采用超滤技术取代传统的二沉池,同时又可以作为后续反渗透(RO)/纳滤(NF)的预处理工序。超滤对微生物完全截留使生化反应器内的污泥浓度从传统活性污泥法的3~5g/L提高到10g/L~30g/L,从而提高了反应器的容积负荷,足以应对高浓度的COD、BOD和总氮的处理需求,占地也大大减少。通常渗滤液处理厂的用地都十分有限,MBR工艺凭借其高效处理和节省占地在渗滤液处理中得到很大的推广和应用。
针对GB16889-2008对氨氮、总氮要求排放值分别为25mgL、40mgL(特别地区为8mgL、20mgL),要求生化部分总氮的去除率是应该达到90%以上,否则后续的膜深度处理难以达到出水标准。要达到高的脱氮效率可以采用复合MBR工艺(有后加碳源的两级A/O-MBR工艺)。碳源选择上,如厂区附近有粪便水、新鲜渗滤液等的可生化性高的污水可考虑作为廉价碳源,如无则需要外購碳源,价格较为昂贵。
2.4.3 反渗透(RO)和纳滤(NF)的应用与组合
反渗透可截留几乎所有污染物,仅有水、少数极小分子和低价离子能通过反渗透膜,对生化部分的要求相对NF低很多,因此,反渗透是确保渗滤液稳定达标排放的一道坚固防线。但是,截留率越高就意味着RO浓缩液的问题更加难解决。
纳滤对污染物的截留能力不及反渗透,要求生化部分对总氮的去除率达到99%以上,能耗和投资都付出了较大的代价,否则出水难以保证达标。但NF对一价盐离子不作截留,可把不可降解的大分子有机物截留却使盐份随出水排出,因此纳滤对采用回灌措施的填埋场可缓解盐分的富集。此外,节约运行成本较低,反渗透操作压力一般在0.3MPa~0.6MPa,而纳滤为0.07MPa左右,同时NF的产水率也比RO高。
选择反渗透还是纳滤一直都是许多业主为难的问题,其选择与当地政策以及浓缩液的处理政策有关。在建的长沙市渗滤液处理改造工程采用的就是纳滤和反渗透作配比组合应用。 2.5 MVC蒸發处理工艺
机械压缩蒸发MVC处理工艺是一种用纯物化方式进行液体浓缩的装置。MVC蒸发浓缩技术理论上可行,但国内仍未有稳定运行的实例,其结垢和清洗问题、反应器的材质及寿命、蒸馏液中的氨后续处理,药剂的消耗都是有待解决的突破口。需要指出的是MVC蒸发处理工艺也会产生浓缩液,其浓缩液的去向与处理也是问题。
三、浓缩液的处理
目前,许多填埋场采用回灌方式处理渗滤液或浓缩液,导致不可降解有机物和盐分在系统内不断积累,最终将会导致生化系统和膜处理系统的崩溃。随着回灌的弊端日益显现,浓缩液的去向和处理问题变得十分迫切。越来越多业主明确禁止浓缩液回灌,并且要求提出切实可操作的处理措施。理论上说,蒸发工艺用于处理浓缩液是可行的,而非直接处理渗滤液原液,从生态系统物质循环的角度考虑,生化部分可将大部分C、H、O、N元素回归大自然,剩下的不可降解有毒性的浓缩液则采用蒸发技术进行高度浓缩最终固化填埋;浓缩液也可通过高效絮凝沉淀去除大部分有机物和盐分后通过多级氧化改变污水的可生化性回流生化系统。这两项技术仍未有已成功运行的实例。
四、结语和建议
渗滤液处理工艺路线的设计需从填埋场系统整体考虑,应满足:可抗高的水质、水量冲击负荷;高效的有机物去除和脱氮能力;高的运行稳定性;较低的运行和能耗;浓缩液的尽可能减量化等,且注意填埋场系统内各个环节的相互制约关系,避免恶性循环。
膜生物反应器(MBR)+反渗透(RO)/纳滤(NF)工艺是目前最为成熟和稳定的渗滤液处理工艺。采用后加碳源的两级AO复合MBR处理技术可使可生化性较差的渗滤液在生化部分的脱氮效率达到90%以上,保证后续膜深度处理的效果,使出水稳定达标。
受到技术、政策和标准的限制,如何在厂内解决浓缩液的处理是一个更加棘手的问题,需要更多业者的探索与实践,为浓缩液找到一条合理的出路。■
参考文献
[1]刘疆鹰等.大型垃圾填埋场渗滤液COD的衰减规律[J].同济大学学报,2000,28(3).
[2]袁维芳.反渗透法处理城市垃圾填埋场渗滤液[J].水处理技术,1997,23(6).
[3]杨协栋等.新型MBR工艺对垃圾渗滤液TN去除的研究[J].四川环境 ,2007,26(4).
[4]梅特卡夫等.废水处理工程处理及回用(第4版)[M].北京:化学工业出版社,2004,6.
[5]张自杰.排水工程下册(第4版)[M].北京:中国建筑工业出版社,2000,6.