论文部分内容阅读
对基于支持向量机的战场直升机目标分类识别技术进行了研究,分别将谐波集(HS)频率和不同尺度小波子空间能量作为特征矢量,设计出一种基于支持向量机的直升机目标分类器,并将该分类器与kNN分类器和BP神经网络分类器进行分类对比实验。结果表明两种特征提取方法,都能很好地体现不同声目标之间的差异,SVM分类器相对于其他两种分类器具有更好的分类性能,目标识别率达到96%以上。