论文部分内容阅读
许多实际应用已经证明,k-means算法能够有效地得到好的聚类结果。但是,k-means直接算法的时间复杂度和模式复杂度对数据量的大小非常敏感,无法满足一些高性能的应用场合,如个性化服务中对用户数据进行的群组分析。对此,笔者提出了一种新颖的基于k-d树的聚类算法。这种算法采用空间数据结构-k-d树组织所有的样本数据,可以高效地搜索到离某个给定的聚类中心最近的全部模式。实验结果表明,该方案可以显著提高k-means直接算法的运算速度,在距离运算量和总的运算时间上,可把性能提高1-2个数量级。