Does cotton bollworm show cross-resistance to the Bacillus thuringiensis toxins Cry1Ac and Cry2Ab? A

来源 :干旱区科学 | 被引量 : 0次 | 上传用户:dong33261
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Since 1996, transgenic Bacillus thuringiensis (Bt) cotton has been commercially grown in numerous countries in an effort to stem the losses caused by key lepidopteran pests. However, the development of pest resistance to Bt toxins has jeopardized the continued utilization of Bt cotton. As a strategy designed to circumvent the development of resistance, Bt cotton varieties expressing two or more toxins targeting the same pest have been introduced. Nevertheless, from the perspective of long-term planting of Bt cotton, the potential risk of cross-resistance to these Bt toxins is a threat that cannot be ignored. In this paper, we review current research (including that based on the analysis of protein binding sites and resistance genes) on the resistance of cotton bollworm (Helicoverpa armigera) to the Bt toxins Cry1Ac and Cry2Ab and the interrelationship between these toxins. On the basis of existing evidence, we assume that the actions of Cry1Ac and Cry2Ab against cotton bollworm are not completely independent, and then propose the resistance-associated gene mutation potential hypothesis. Although the mechanisms underlying the resistance of pests to Bt toxins are yet to be comprehensively elucidated, this hypothesis could undoubtedly have important implications for adopting pyramid strategy in the future. Further research is recommended to devise strategies to retard the development of H. armigera resistance to Bt cotton, either using different Bt toxins or their various combinations.
其他文献
NaAlH4作为轻金属配位氢化物的典型代表,是新型储氢材料的研究热点之一,但是依然存在吸放氢温度过高、动力学缓慢、循环稳定性较差等缺点。本文选择NaAlH4作为研究对象,在文献调
能源与环境危机是人类目前面临的最严峻的问题,寻找环境友好清洁能源一直是科学界研究的热点。光催化技术能够利用自然中取之不尽的太阳能,在能源与环境保护领域具有广泛的应用
硅基负极材料由于具备目前已知最高的嵌锂比容量,同时兼具资源储量丰富、电化学嵌锂电位低等优点,成为目前极具吸引力的锂离子电池负极材料。而微米/亚微米尺寸粉体硅更具振实密度高、体积比能量密度高、制备简单、成本低等特点,具有广阔的实用前景。但在实际应用中,由于硅材料本征电子导电性差,同时在嵌脱锂时会产生高达280%的体积形变,导致循环过程中容量的急剧衰减,尤其是微米/亚微米尺寸的Si负极材料,严重制约了
Snow resisting capacity of vegetation is important for secondary distribution of water resources in seasonal snow areas of grassland because it affects the rege