论文部分内容阅读
标签传播算法是一种被广泛应用的社区发现算法,该算法为网络中的每个节点分配一个初始标签,然后通过传播标签来发现复杂网络中的潜在社区,具有时间复杂度低的特点。当前基于标签传播的重叠社区发现算法存在忽略节点重要性差异、需要人为设置参数等不足。针对该类算法在重叠社区发现方面的缺陷,提出一种基于多标签传播的重叠社区发现优化算法。该算法使用K-核分解方法找出若干个社区核心节点,以这些节点为种子节点,逐层向外传播标签;在进行标签选择的时候以邻居节点标签的种类来决定重叠节点的标签个数。实验表明,该算法明显改善了社区发现的