论文部分内容阅读
针对目前人民币汇率预测研究存在的数据源单一导致难以提升预测效果的问题,提出一种嵌入互联网舆情强度的预测技术,通过融合多方面数据源进行对比分析,有效降低了人民币汇率的预测误差。首先,融合互联网外汇新闻数据和历史行情数据,并将多源文本数据转化为可计算的特征向量;其次,通过情感特征向量构建五种特征组合并对其进行对比,给出了嵌入互联网舆情强度的特征组合作为预测模型输入;最后,设计外汇舆情影响汇率预测的滑动时间窗口,建立基于机器学习的汇率预测模型。实验结果表明,嵌入互联网舆情的特征组合相对于不含舆情的特征组合