论文部分内容阅读
A novel reachable set(RS) model is developed within a framework of exoatmospheric interceptor engagement analysis. The boost phase steering scheme and trajectory distortion mechanism of the interceptor are firstly explored. A mathematical model of the distorted RS is then formulated through a dimension–reduction analysis. By treating the outer boundary of the RS on sphere surface as a spherical convex hull, two relevant theorems are proposed and the RS envelope is depicted by the computational geometry theory. Based on RS model, the algorithms of intercept window analysis and launch parameters determination are proposed, and numerical simulations are carried out for interceptors with different energy or launch points. Results show that the proposed method can avoid intensive on-line computation and provide an accurate and effective approach for interceptor engagement analysis. The suggested RS model also serves as a ready reference to other related problems such as interceptor effectiveness evaluation and platform disposition.
A novel reachable set (RS) model is developed within a framework of exoatmospheric interceptor engagement analysis. The boost phase steering scheme and trajectory distortion mechanism of the interceptor are explored early. A mathematical model of the distorted RS is then formulated through a dimension-reduction analysis. By treating the outer boundary of the RS on sphere surface as a spherical convex hull, two relevant theorems are proposed and the RS envelope is depicted by the computational geometry theory. Based on RS model, the algorithms of intercept window analysis and launch parameters determination are proposed, and numerical simulations are carried out for interceptors with different energy or launch points. The suggested RS model also serves as a ready reference to other related problems such as interceptor effect iveness evaluation and platform disposition.