论文部分内容阅读
针对机器学习安全、防御对抗样本攻击问题,提出了基于PCA的对抗样本攻击防御方法.首先利用快速梯度符号(FGSM)非针对性攻击方式,敌手为白盒攻击,其次在MNIST数据集上进行PCA来防御深度神经网络模型的逃逸攻击,最后实验结果表明:PCA能够防御对抗样本攻击,在维度降至50维时防御效果达到最好.