论文部分内容阅读
灰色预测适合于原始数据序列按指数规律变化的问题,而马尔柯夫适用于预测随机波动大的动态过程.有机地结合两者构成灰色马尔柯夫预测方法,可发挥两者的优势,从而提高预测精度.该方法首先用GM(1,1)模型进行预测,而后对相对误差序列进行马尔柯夫预测,最后用该预测值修正GM(1,1)的预测结果,因而具有较高的预测精度.使用灰色马尔柯夫预测方法对苏州某交叉口实时交通量进行预测,预测结果优于单一灰色GM(1,1)预测.实验表明,灰色马尔柯夫预测方法用于交通量预测是有效可行的.