论文部分内容阅读
提出了一种基于网格和分形维数的聚类算法,它结合了网格聚类和分形聚类的优点,克服了传统网格聚类算法聚类质量降低的缺点,改进了分形聚类耗时较大的问题。此算法首先根据网格密度得到初始类别,再利用分形的思想,将未被划分的网格依次归类。实验结果证明,它能够发现任意形状且距离非邻近的聚类,且适用于海量、高维数据。