论文部分内容阅读
为了提高多层前馈神经网络权的学习效率,引入变尺度方法来训练神经网络的权值,并根据训练误差自适应调整学习系数和动量因子.将该方法应用于城市用水量预测中,建立了非线性人工神经网络预测模型.该模型考虑了城市工业用水重复利用率、用水人口、经济发展等众多因素对用水量需求的影响,具备系统决策功能.杭州市预测实例表明,建立的模型及其相应计算方法具有较高的预测精度和准确度.