论文部分内容阅读
用线性变换方法推导了二维正方结构正n边形直柱光子晶体的带隙计算公式 .采用线性变换方法可以简单地处理平面波展开方法中ε- 1 (r)的Fourier变换系数 ,使得相应的带隙计算变得简单有效 .在固定填充率f=0 4的情况下 ,计算了砷化镓 (ε=11 4 )材料的正n边形直柱光子晶体带隙结构 .发现随着n的增加 ,光子晶体的对称性相应提高 ,最大带隙的大小出现单调下降趋势 .当n趋向于无穷大的时候 ,计算的正n边形直柱光子晶体的带隙趋向于零 ,与圆柱的情况完全相符 .
The formula of the bandgap of the positive n-prism straight photonic crystal with two-dimensional square structure is deduced by using the linear transformation method. The linear transform method can simply deal with the Fourier transform coefficient of ε-1 (r) in the plane wave expansion method, Bandgap calculations become simple and effective.With the fixed fill rate of f = 0 4, the bandgap structure of the positive n-side straight photonic crystal of gallium arsenide (ε = 11 4) was calculated.With the increase of n The symmetry of the photonic crystal increases correspondingly, and the maximum band gap decreases monotonously.When n tends to infinity, the calculated bandgap of positive n-polygonal straight photonic crystal tends to zero, and the condition of the cylinder is completely Match.