论文部分内容阅读
[摘要]用MATLAB/SIMULINK建立了异步电动机直接转矩控制动态仿真模型,用PWM整流代替了传统的相控整流,对圆形磁链轨迹进行了仿真研究。该模型是深入研究直接转矩控制系统的有效工具。
[关键词]直接转矩控制PWM整流MATLAB/SIMULINK
Modeling and Simulation of Direct Torque Control
system for Three-phase Asynchronous Motor
LI Ya-lin
(Yuan’an county power supply companyYuan an 444299Hubei ProvinceChina)
Abstract:The dynamic simulating model of Direct Torque Control for asynchronous motor is founded in this paper.Instead of the traditional phase-controlled rectifier,PWM rectifier is studied,having the simulation research about ring flux trace to DTC system.The simulation model is a effective tool to the study of DTC system.
Keywords:Direct torque control;PWM rectifier;MATLAB/SIMULINK
中图分类号:TM343 文献标识码:TM 文章编号:1009―914X(2013)31―0613―02
1引 言
继矢量控制之后,1984年德国鲁尔大学的Depen Brock又提出了交流电动机的直接转矩控制方法,其特点是直接采用空间电压矢量,直接在定子坐标系下计算并控制电机的转矩和磁通;采用滞环控制产生PWM直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。和矢量控制不同,直接转矩控制摒弃了解耦的思想,取消了旋转坐标变换,简单的通过电机定子电压和电流,借助瞬时空间矢量理论计算电机的磁链和转矩,并根据与给定值比较所得差值,实现磁链和转矩的直接控制。当异步电动机是由一个三相逆变器供电时,则电动机的输入电压完全取决于逆变器的开关切换模式,而电动机磁通的波形又取决于输入电压的模式。因此直接转矩控制的目标之一就是建立磁链和逆变器的开关模式之间的关系,通过控制逆变器开关正确的切换,使电动机气隙获得一个近似圆形的磁场[1]。本文用Matlab/Simulink建立了圆形磁链的仿真研,并给出了一些仿真结果。
2直接转矩控制的基本原理
假设a、b、c分别表示在空间静止不动的三相绕组的轴线,空间互差120度。电压空间矢量 是一个以速度 旋转的矢量,三相电压 可以看做是电压空间矢量 在a、b、c三个坐标轴上的投影,它们的方向始终在各相的轴线上,大小随时间按正弦规律变化,则
(1)
式中: 为电压幅值, 为电压的角频率。 、 为电压空间矢量 在轴上的投影,其中 轴与a轴重合, 轴超前 轴90度。因此三相对称正弦电压可等效地用 、 表示,同理可得交流电机的定子电流空间矢量 和定子磁链空间矢量 。联立 、 、 和异步电机的数学模型可得
(2)
(3)
(4)
(5)
式中: 为定子电阻, 均为空间矢量。
这样,当交流电机由对称正弦电压供电时,电压空间矢量 沿半径为 的圆形轨迹匀速运动,其速度为 ,它将在电机定子绕组中产生一个同样沿圆形轨迹运动的 ,其速度与 相同。定子磁链矢量的轨迹将按式(2)规律变化。在实际运行中,保持定子磁链矢量的幅值为额定值,以充分利用电动机铁芯,转子磁链的幅值由负载决定,不能突变。要改变电动机转矩的大小,可以通过改变磁通角 的大小来实现。
逆变器不同的开关状态可产生如图1中所示的u1~u6及两个零电压矢量。基于便于控制的考虑,把定子磁链所在空间位置划分为①~⑥区间,总共六个扇区[2]。
图1定子电压空间矢量与定子磁链区域
本模型的定子磁链估计方法为u-i模型法,即采用式(3)、(4)利用定子电压和电流估计磁链。电磁转矩可用式(5)计算。定子磁链幅值、电磁转矩与各自指令值的差值需要先经过施密特触发器,容差选得越小,磁链轨迹越接近圆形,但是容差越小,电压矢量交替越频繁,逆变器开关元件的开关频率也越高。容差的选取原则是在保证不超过逆变器最高频率的情况下尽量取小。设磁链和转矩滞环的宽度分别为 和 ,则滞环比较器的输出满足如下关系:
(6)
对于转矩误差,这里只考虑定子磁链矢量逆时针旋转的情况:
(7)
得到滞环比较结果后,可根据定子磁链矢量所在的区域,按照如表1所示的电压开关矢量表选择合适的电压矢量,就可实现电机的直接转矩控制。
表1 电压开关矢量表
定子磁链所在区域
1 2 3 4 5 6
1 1
0
0 1
0
3直接转矩控制系统实现
直接转矩控制的系统框图包括PWM整流模块、三相逆变模块、异步电机模块、速度控制模块、转矩与定子磁链估计模块、电压开关矢量选择模块等几部分组成,如图2所示:
图2异步电机直接转矩控制仿真模型图
为了克服传统二极管整流或相控整流的缺点,本文整流部分采用PWM整流,为逆变器和直接转矩控制提供稳定的直流电压,构成PWM整流-PWM逆变的扩扑结构,以达到电网侧功率因数可调、能量可双向流动、直流母线电压稳定的目的。PWM控制技术的运用与发展为整流器性能的改进提供了变革性的思路和手段,它采用全控型器件代替二极管或晶闸管。其基本原理是通过控制功率开关管的通断状态,使整流器输入电流接近正弦波,并且电流和电压同相位,从而消除大部分电流谐波并使功率因数接近于1[3]。控制模块采用的为同步旋转坐标系下的电压电流双闭环控制,PI调节器可以通过手动调节其参数。又因为dq坐标系下,Park变换可得到如下旋转坐标下的电流方程
(8)
(9)
令相位角分别为 、 、 幅值为Vi的信号作为三相SPWM正弦参考电压的调制信号,产生6个开关器件的通、断信号,输出所需的直流电压 。其中,
根据公式(3)、(4)可建立转矩与定子磁链估计模块,如图所示:
图3,转矩与定子磁链估计模块
为了验证离散直接转矩控制的可行性,模型采用信号离散采样的方式,将电压、电流离散化,通过离散积分进行磁链观测。对于电压来说,假设t1时刻的函数值为 ,t2时刻的函数值为 ,且t1时刻和t2时刻的差 极度小,趋近于0,则微元部分的面积为 那么整个函数与时间轴围成的面积为 即相当于函数 关于时间t的积分。
把定子电流、电压和磁链离散化,式(3)可写成下面的形式:
[关键词]直接转矩控制PWM整流MATLAB/SIMULINK
Modeling and Simulation of Direct Torque Control
system for Three-phase Asynchronous Motor
LI Ya-lin
(Yuan’an county power supply companyYuan an 444299Hubei ProvinceChina)
Abstract:The dynamic simulating model of Direct Torque Control for asynchronous motor is founded in this paper.Instead of the traditional phase-controlled rectifier,PWM rectifier is studied,having the simulation research about ring flux trace to DTC system.The simulation model is a effective tool to the study of DTC system.
Keywords:Direct torque control;PWM rectifier;MATLAB/SIMULINK
中图分类号:TM343 文献标识码:TM 文章编号:1009―914X(2013)31―0613―02
1引 言
继矢量控制之后,1984年德国鲁尔大学的Depen Brock又提出了交流电动机的直接转矩控制方法,其特点是直接采用空间电压矢量,直接在定子坐标系下计算并控制电机的转矩和磁通;采用滞环控制产生PWM直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。和矢量控制不同,直接转矩控制摒弃了解耦的思想,取消了旋转坐标变换,简单的通过电机定子电压和电流,借助瞬时空间矢量理论计算电机的磁链和转矩,并根据与给定值比较所得差值,实现磁链和转矩的直接控制。当异步电动机是由一个三相逆变器供电时,则电动机的输入电压完全取决于逆变器的开关切换模式,而电动机磁通的波形又取决于输入电压的模式。因此直接转矩控制的目标之一就是建立磁链和逆变器的开关模式之间的关系,通过控制逆变器开关正确的切换,使电动机气隙获得一个近似圆形的磁场[1]。本文用Matlab/Simulink建立了圆形磁链的仿真研,并给出了一些仿真结果。
2直接转矩控制的基本原理
假设a、b、c分别表示在空间静止不动的三相绕组的轴线,空间互差120度。电压空间矢量 是一个以速度 旋转的矢量,三相电压 可以看做是电压空间矢量 在a、b、c三个坐标轴上的投影,它们的方向始终在各相的轴线上,大小随时间按正弦规律变化,则
(1)
式中: 为电压幅值, 为电压的角频率。 、 为电压空间矢量 在轴上的投影,其中 轴与a轴重合, 轴超前 轴90度。因此三相对称正弦电压可等效地用 、 表示,同理可得交流电机的定子电流空间矢量 和定子磁链空间矢量 。联立 、 、 和异步电机的数学模型可得
(2)
(3)
(4)
(5)
式中: 为定子电阻, 均为空间矢量。
这样,当交流电机由对称正弦电压供电时,电压空间矢量 沿半径为 的圆形轨迹匀速运动,其速度为 ,它将在电机定子绕组中产生一个同样沿圆形轨迹运动的 ,其速度与 相同。定子磁链矢量的轨迹将按式(2)规律变化。在实际运行中,保持定子磁链矢量的幅值为额定值,以充分利用电动机铁芯,转子磁链的幅值由负载决定,不能突变。要改变电动机转矩的大小,可以通过改变磁通角 的大小来实现。
逆变器不同的开关状态可产生如图1中所示的u1~u6及两个零电压矢量。基于便于控制的考虑,把定子磁链所在空间位置划分为①~⑥区间,总共六个扇区[2]。
图1定子电压空间矢量与定子磁链区域
本模型的定子磁链估计方法为u-i模型法,即采用式(3)、(4)利用定子电压和电流估计磁链。电磁转矩可用式(5)计算。定子磁链幅值、电磁转矩与各自指令值的差值需要先经过施密特触发器,容差选得越小,磁链轨迹越接近圆形,但是容差越小,电压矢量交替越频繁,逆变器开关元件的开关频率也越高。容差的选取原则是在保证不超过逆变器最高频率的情况下尽量取小。设磁链和转矩滞环的宽度分别为 和 ,则滞环比较器的输出满足如下关系:
(6)
对于转矩误差,这里只考虑定子磁链矢量逆时针旋转的情况:
(7)
得到滞环比较结果后,可根据定子磁链矢量所在的区域,按照如表1所示的电压开关矢量表选择合适的电压矢量,就可实现电机的直接转矩控制。
表1 电压开关矢量表
定子磁链所在区域
1 2 3 4 5 6
1 1
0
0 1
0
3直接转矩控制系统实现
直接转矩控制的系统框图包括PWM整流模块、三相逆变模块、异步电机模块、速度控制模块、转矩与定子磁链估计模块、电压开关矢量选择模块等几部分组成,如图2所示:
图2异步电机直接转矩控制仿真模型图
为了克服传统二极管整流或相控整流的缺点,本文整流部分采用PWM整流,为逆变器和直接转矩控制提供稳定的直流电压,构成PWM整流-PWM逆变的扩扑结构,以达到电网侧功率因数可调、能量可双向流动、直流母线电压稳定的目的。PWM控制技术的运用与发展为整流器性能的改进提供了变革性的思路和手段,它采用全控型器件代替二极管或晶闸管。其基本原理是通过控制功率开关管的通断状态,使整流器输入电流接近正弦波,并且电流和电压同相位,从而消除大部分电流谐波并使功率因数接近于1[3]。控制模块采用的为同步旋转坐标系下的电压电流双闭环控制,PI调节器可以通过手动调节其参数。又因为dq坐标系下,Park变换可得到如下旋转坐标下的电流方程
(8)
(9)
令相位角分别为 、 、 幅值为Vi的信号作为三相SPWM正弦参考电压的调制信号,产生6个开关器件的通、断信号,输出所需的直流电压 。其中,
根据公式(3)、(4)可建立转矩与定子磁链估计模块,如图所示:
图3,转矩与定子磁链估计模块
为了验证离散直接转矩控制的可行性,模型采用信号离散采样的方式,将电压、电流离散化,通过离散积分进行磁链观测。对于电压来说,假设t1时刻的函数值为 ,t2时刻的函数值为 ,且t1时刻和t2时刻的差 极度小,趋近于0,则微元部分的面积为 那么整个函数与时间轴围成的面积为 即相当于函数 关于时间t的积分。
把定子电流、电压和磁链离散化,式(3)可写成下面的形式: