论文部分内容阅读
针对机械振动信号特征提取中的去噪问题,联合集合经验模式分解(EEMD)和最小均方算法(LMS)发展了一种自适应去噪方法。首先研究了LMS的固定步长固定阶数、变步长(VS)和变阶数(VT)的算法性能,提出在迭代过程中以比较阶数和步长变化时的最小均方误差期望为收敛方向,发展了一种联合变步长变阶数最小均方算法(VSVTLMS)的去噪方法;通过对原信号的EEMD分解,使各模式分量窄带化,进而通过VSVT-LMS对每个IMF分量进行去噪,有效避免LMS算法对宽频信号的不稳定性,同时也避免了EMD分解的不唯一性和去噪中阈值的选择问题。最后通过对仿真和实际车辆振动信号去噪,验证了方法在工程上的可行性。