论文部分内容阅读
非冗余机械臂跟踪设定路径时 ,奇异点上 Jacobian矩阵降秩 ,基于 Jacobian逆的运动规划方法将失效。针对此问题提出一种精确跟踪奇异路径的算法 ,把路径跟踪问题化为非线性特征值问题 ,用数值方法求解路径跟踪方程 ,得到以扩展空间解曲线弧长为参数的逆运动学解 ,而关节轨迹可规划为弧长参数的任意函数。算法采用自适应步长和一阶模型预测方法 ,具有较低计算复杂性和较快收敛速度。给出一个仿真算例 ,说明了算法的有效性
Non-redundant manipulator tracking set path, the Jacobian matrix on the singular point of rank reduction, Jacobian inverse based motion planning method will fail. Aiming at this problem, an algorithm to track singular paths is proposed. The problem of path tracking is transformed into a nonlinear eigenvalue problem. By solving the path-tracking equations numerically, an inverse kinematic solution is obtained by taking the arc length of the solution space as the parameter. Joint trajectories can be programmed as arc length parameters of any function. The algorithm uses adaptive step size and first-order model prediction method, with lower computational complexity and faster convergence rate. A simulation example is given to illustrate the effectiveness of the algorithm