论文部分内容阅读
为了解决SVM算法针对海量、非平衡样本的入侵检测存在训练速度慢等问题,提出基于邻界区的快速增量SVM入侵检测算法。在该算法中,首先利用均值和标准差的K均值聚类分析算法对训练样本集进行邻界区生成,然后对邻界区数据集进行样本筛选,剔除成为支持向量概率较小的点和噪声或过拟合点,最后通过增量学习模式构造最优超平面,生成最优SVM分类器。实验仿真证明,该算法具有较好的分类性能,能有效提高入侵检测的检测精度和检测率,降低误报率。