论文部分内容阅读
“大数据”时代给机械设备智能诊断带来了数据总量大、产生速度快、形式多、价值密度低等新挑战,传统智能故障诊断“人工特征提取+模式识别”的模式已然不能满足发展需求。本文分析了机械大数据的特性对故障诊断结果的影响,详述了堆叠自编码网络(SAE)、卷积神经网络(CNN)、深度置信网络(DBN)、循环神经网络(RNN)4个基本框架和其他深度学习模型在故障诊断领域,尤其是复杂机械数据的特征学习和各种机械设备健康监控任务的目标预测等相关研究。分析了不同模型的利弊和适应问题:SAE与DBN属于无监督学习模型,对数据要求较