【摘 要】
:
The cavity magnetron is the most compact, efficient source of high-power microwave (HPM) radiation. The imprint that the magnetron has had on the world is comparable to the invention of the nuclear bomb. High- and low-power magnetrons are used in many app
【机 构】
:
DepartmentofElectricalandComputerEngineering,UniversityofNewMexico,Albuquerque,NewMexico87131-0001,U
【出 处】
:
MatterandRadiationatExtremes
论文部分内容阅读
The cavity magnetron is the most compact, efficient source of high-power microwave (HPM) radiation. The imprint that the magnetron has had on the world is comparable to the invention of the nuclear bomb. High- and low-power magnetrons are used in many applications, such as radar systems, plasma generation for semiconductor processing, and—the most common—microwave ovens for personal and industrial use. Since the invention of the magnetron in 1921 by Hull, scientists and engineers have improved and optimized magnetron technology by altering the geometry, materials, and operating conditions, as well as by identifying applications. A major step in advancing magnetrons was the relativistic magnetron introduced by Bekefi and Orzechowski at MIT (USA, 1976), followed by the invention of the relativistic magnetron with diffraction output (MDO) by Kovalev and Fuks at the Institute of Applied Physics (Soviet Union, 1977). The performance of relativistic magnetrons did not advance significantly thereafter until researchers at the University of Michigan and University of New Mexico (UNM) independently introduced new priming techniques and new cathode topologies in the 2000s, and researchers in Japan identified a flaw in the original Soviet MDO design. Recently, the efficiency of the MDO has reached 92% with the introduction of a virtual cathode and magnetic mirror, proposed by Fuks and Schamiloglu at UNM (2018). This article presents a historical review of the progression of the magnetron from a device intended to operate as a high-voltage switch controlled by the magnetic field that Hull published in 1921, to the most compact and efficient HPM source in the twenty-first century.
其他文献
堆栈沙漏网络(SHN)是人体姿态估计中的代表性研究成果,但该网络忽略了关节局部信息。因此,提出了一种基于改进沙漏网络的人体姿态估计模型。首先,利用多个残差模块及步长为2的卷积层获取低层次到高层次的特征,同时随着网络层数的加深,相应调整残差模块的数目和通道数,以突出局部细节特征信息。然后,为了提取遮挡部位的纹理和形状等局部特征,融合了在线困难关键点挖掘模块。最后,采用反卷积最大化恢复原始的局部特征。
擦一根火柴点燃一股喷气流,立刻就会射出一束激光。这就是美帝卡维尔公司威德尔(I. Wieder)所发明的新型火焰激光器的运转情况。威德尔把它称为“化学光共振抽运”的激光器。并认为,由于此种装置运转时不用电源,以后将证明有重要意义。
A fiber structure with a circularly polarizing property is proposed. The fiber consists of a round core and a triple-lobe stress region in the cladding, which is compatible with single-mode fibers, and it can be fabricated using conventional metal chemica
The third-order susceptibility of In_(x)Ga_(1-x)N/GaN quantum well (QW) has been investigated by taking into account the strain-induced piezoelectric (PZ) field, and the effective-mass Schrodinger equation is solved numerically. It is shown thatthe third-
以南京市为例,利用陆地卫星和夜间灯光卫星的光学遥感信息并结合地理信息,构建了气象观测站局地(周边2 km缓冲区)探测环境表征参数:人为活动影响参数(人口密度和人为热通量)、几何参数(土地利用类型的面积占比和海拔)和物理光学参数(不透水表面面积占比和植被指数),研究了它们对气温观测的影响。结果表明,在相同的天气背景下,当不透水表面面积占比和建成区面积占比减少,植被指数和水体面积占比增加时,气温下降。
The infrared stimulated radiation of 1D2--
采用时间相关单光子计数原理搭建荧光寿命测量光学系统,实验验证了单量子点发射荧光的单光子性。针对石英玻片、硅片、金膜等不同基片上多处具有单光子荧光发射特性的单量子点,对其发射荧光的寿命进行了测量、对比,计算了不同基片上单量子点发射荧光的衰减速率、量子产率等与量子点到基片有效距离的相关性,解释了实验数据。此外,分析了石英玻片、硅片、金膜上单量子点发射荧光的闪烁行为,结果表明不同基片对单量子点单光子荧光的闪烁与衰减速率具有调控作用。
提出近场衍射图样的抽样定理处理方法。 在近场衍射中, 孔径和衍射场分布为或近似为空间有界物, 在其频域中抽样可以比较精确地恢复衍射场的分布。 衍射场频谱带宽的近似值由频谱的幅值大于中心频谱极大幅值的1%的频率范围所确定。 在此带宽内对频谱抽样, 抽样间距与观察处的带宽成正比, 与孔径函数的空间带宽积成反比。 对于线度小于波长的狭缝和圆孔的近场衍射图样的计算结果都与他人理论和实验结果相一致。 该方法具有直观简捷的优点。
In this paper, a long-period waveguide grating was fabricated in x-cut lithium niobate substrate by patterned annealed proton exchange waveguide fabrication process. The waveguide mode characteristic was evaluated using a charge-coupled device (CCD) camer