【摘 要】
:
二硒化钼是一种二维过渡金属硫族化合物材料,凭借其具有较快的离子迁移率、较弱的范德华力的层状结构,在锂离子电池的应用研究中吸引了广泛的关注.同时在镁离子电池应用中表现出潜在的研究前景.然而,有关二硒化钼在锂离子电池中的报道多集中在如何提高储锂性能上,对其离子存储机理缺乏深入研究.此外,在储镁性能和机理上均没有报道.本项工作通过湿化学和高温煅烧两步法合成了二硒化钼纳米球,当二硒化钼纳米球用作锂离子电池负极材料时,在5 A·g-1的电流密度下展示了高于100 mAh·g-1的优异高倍率容量;同时,作为镁离子电池
【机 构】
:
中国电子科技集团公司第三十八研究所,安徽合肥230088;中国科学技术大学管理学院,安徽合肥230026;武汉理工大学材料科学与工程学院,湖北武汉430070
论文部分内容阅读
二硒化钼是一种二维过渡金属硫族化合物材料,凭借其具有较快的离子迁移率、较弱的范德华力的层状结构,在锂离子电池的应用研究中吸引了广泛的关注.同时在镁离子电池应用中表现出潜在的研究前景.然而,有关二硒化钼在锂离子电池中的报道多集中在如何提高储锂性能上,对其离子存储机理缺乏深入研究.此外,在储镁性能和机理上均没有报道.本项工作通过湿化学和高温煅烧两步法合成了二硒化钼纳米球,当二硒化钼纳米球用作锂离子电池负极材料时,在5 A·g-1的电流密度下展示了高于100 mAh·g-1的优异高倍率容量;同时,作为镁离子电池正极材料时,在20 mA·g-1的电流密度下表现出了120mAh·g-1的高储镁可逆容量.另外,通过电化学、原位和非原位X射线衍射表征技术,分别揭示了二硒化钼纳米球低平台发生的转化式和高平台发生的类锂硒电池反应并存的储锂机理,以及赝电容式为主,嵌入式为辅的储镁机理.本项工作不仅为二维过渡金属硫族化合物材料的储锂机理提供了深刻的理解,同时也为新型层状储能材料的设计开发提供了方向.
其他文献
燃料电池的阴极反应的反应动力学速率非常慢,限制了燃料电池技术的发展.因此,寻找低成本、高活性的氧还原催化剂具有重要的意义.多元金属核壳团簇表现出优良的氧还原活性.在本文中,以原子个数为19、38、55和79的八面体团簇作催化剂模型,采用密度泛函理论(GGA-PBE-PAW)方法,研究了一系列不同尺寸核壳Nim@Mn-m=19,38,55,79;m=1,6,13,19;M=Pt,Pd,Cu,Au,Ag)团簇催化剂的活性规律.优化*O、*OH和*OOH吸附中间体结构,计算了吸附自由能和反应吉布斯自由能,以超电
混凝土作为各类工程结构中使用量最大的建筑材料,其结构形式可塑性强、防火性能好、性能稳定、取材便捷、经久耐用、造价成本和养护成本都相对较低,但极易因多种因素产生各种裂缝.裂缝产生不仅影响混凝土结构的承载能力,而且会对建筑物外观、耐久性、安全性能等产生负面影响.混凝土裂缝主要可以分为三类:结构裂缝、收缩裂缝、温度裂缝.而结构设计、材料配比、施工方法和外界温湿度环境等都是影响混凝土裂缝的因素.现从设计、材料和施工三方面给出防治裂缝的措施,预防或减少裂缝的出现,对建筑结构的安全性能、使用性能和耐久性能具有重要意义
锂硫电池的实际能量密度不高和多硫化物(LiPSs)的穿梭效应等问题严重影响了该电池的实际应用.本文通过将二维的Ti3C2Tx Mxene纳米片与碳黑/硫(CB/S)材料进行混合,制备了Ti3C2Tx-CB/S正极材料并将其涂覆在商业隔膜(PP)上,最终获得了Ti3C2Tx-CB/S-PP 一体式电极并用于锂硫电池.利用Ti3C2TZ纳米片对CB/S进行修饰,不仅能提高活性物质硫的导电性,还能对扩散的LiPSs进行物理阻挡和化学吸附.而一体式电极的设计有利于提高电池的能量密度.恒流充放电测试结果表明,Ti3
本文主要对高镍三元材料(Li(Ni0.85Co0.1Mn0.05)O2,Ni85)和常规低镍三元材料(Li(Ni0.6Co02Mn02)O2,Ni60)两种三元材料的相变电压范围进行了划分和测定,以研究两种材料相变规律的区别,并进一步分析得出高镍材料在充电过程中的结构稳定性相对较弱的原因.本文主要采用了XRD、dQ·dV-1以及SEM的表征方式对两种材料的相变、结构变化及颗粒表面的形貌进行分析.并得出以下结论,高镍正极在3.0 V~4.2 V范围内充电时经历了H1→M→H2→H3的三次相变过程,最终产物为
石墨烯纸具有优良的导电导热性能,但强度和硬度较低.为了获得良好的综合力学性能以提高石墨烯纸的实用价值,本文提出了制备石墨烯纸-金属复合材料的构想,从实验上初步研究了电沉积法制备石墨烯纸-金属复合材料的可行性,并探究了石墨烯纸与电沉积金属界面结合情况.采用两种常见镀层金属Cu、Cr,在实验室使用电沉积法制备了石墨烯纸-Cu,石墨烯纸-Cr两种复合镀层材料.利用扫描电镜对复合材料的表面形貌和横截面进行了表征,结果显示石墨烯纸-Cr复合材料的界面结合相对紧密.本文首次将二维错配度应用到石墨烯纸与金属镀层界面结合
锂金属电池作为下一代高比能量电池技术受到人们越来越广泛的关注.然而由锂枝晶生长引发的安全问题是锂金属电池商业化面临的最大挑战之一.具有高锂离子迁移数和离子电导率的聚合物电解质是抑制锂枝晶生长的重要策略之一.本文将季戊四醇四丙烯酸酯和自由基引发剂AIBN添加至商业化电解液中,采用具有单离子传导功能的多孔聚合物电解质为锂金属电池的电解质隔膜,通过在电池内部发生热诱导原位聚合制备三维半互穿网络单离子传导聚合物电解质,达到提高电解质隔膜离子电导率和机械拉伸性能,以及有效抑制锂枝晶生长的目的 .通过该策略的实施,成
使用硫化物固体电解质的全固态锂硫电池由于多硫化物不溶于硫化物固体电解质及硫化物电解质不可燃的特性,得以完全避免穿梭效应并显著提高了电池的安全性能而被认为是极具潜力的下一代储能电池.如何建立并平衡复合正极中离子/电子导电网络且维持复合正极中较高活性物质含量对于全固态锂硫电池至关重要.本文以单质硫为活性物质研究了复合导电添加剂对全固态锂硫电池性能的影响,发现以乙炔黑(AB)为导电碳材料明显优于SuperP和Ketjen Black;优化复合正极的组成,发现硫:乙炔黑:固体电解质的质量比为40∶20∶40时,全
本文以氧化石墨烯包覆泡沫镍电极(GO@NF)作为基底,采用水热法在GO@NF基底上原位生长CoO纳米花,同时GO在水热过程中被同步热还原为还原氧化石墨烯(RGO),从而一步制得还原氧化石墨烯包覆泡沫镍负载CoO纳米花电极(CoO/RGO@NF).使用XRD和SEM对CoO/RGO@NF电极进行表征,发现CoO纳米花均匀生长在泡沫镍三维网络结构上,CoO纳米花为大量针状纳米棒围绕一个中心而成的花状结构,纳米棒的长度约为10~ 15 μm,直径约为100~200 nm.使用循环伏安和线性扫描法测试了CoO/R
采用非溶剂诱导相转化法(NIPS)制备了热塑性聚氯酯/醋酸纤维素(TPU/CA)新型聚合物隔膜.然后,将隔膜浸入液体电解质中得到TPU/CA凝胶聚合物电解质(GPEs).研究TPU与CA的质量比对GPEs性能的影响.通过X射线衍射(XRD)、扫描电镜(SEM)、热重(TG)、差示扫描量热(DSC)、线性扫描伏安(LSV)、电化学阻抗(EIS)等对TPU/CA膜进行表征.结果 表明,在共混隔膜中引入CA可以降低TPU的结晶度,增加隔膜的吸液率.其中,室温下TPU/CA=7/3基电解质的离子电导率为1.04
通过水热法合成了一系列MoS2/GQDs复合材料,并制成碳基复合电极.利用电化学测试手段挑选出最佳电极后用于微生物电解池(MEC)阴极的产氢性能研究.实验结果显示:Na2MoO4,半胱氨酸和GQDs的最佳原料配比为375∶600∶1,制备出的MoS2/GQDs呈现明显的爆米花样纳米片结构,片层厚度在10 nm左右,当碳纸负载量为1.5 mg· cm2时,MoS2/GQDs碳纸电极的析氢催化能力最佳.在MEC产氢实验中,MoS2/GQDs阴极MEC的产气量、氢气产率、库仑效率、整体氢气回收率、阴极氢气回收率