论文部分内容阅读
Using the first-principles self-consistent discrete variational method based on density functional theory, we investigated the effect of light impurities C and N on the electronic structure of kink on the [100](010) edge dislocation (ED) in bcc iron. Our energetic calculations show that the light impurities have a strong segregation tendency to enter the kink. The results of the charge distribution and the local den-sity of states indicate that the strong bonds between the impurity atoms and the neighboring Fe atoms are formed due to the hybridizations of impurity atoms 2p states and Fe 3d4s4p states. The introduction of light impurities can stabilize the kink system, and impedes the sideward motion of the kink in the [100](010) ED. This is, the light impurities induce a strong pinning effect on the [100](010) ED and may result in the solid solute hardening.
Using the first-principles self-consistent discrete variational method based on density functional theory, we investigated the effect of light impurities C and N on the electronic structure of kink on the [100] (010) edge dislocation (ED) in bcc iron. Our energetic calculations show that the light impurities have a strong segregation tendency to enter the kink. The results of the charge distribution and the local den-sity of states indicate that the strong bonds between the impurity atoms and the nearby Fe atoms are formed due to the hybridizations of impurity atoms 2p states and Fe 3d4s4p states. The introduction of light impurities can stabilize the kink system, and impedes the sideward motion of the kink in the [100] (010) ED. This is, the light ignores induce strong pinning effect on the [100] (010) ED and may result in the solid solute hardening.