基于AC-GAN数据重构的风电机组主轴承温度监测方法

来源 :智能系统学报 | 被引量 : 0次 | 上传用户:lambkin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为更好地识别风电机组主轴承运行状态,提出了一种基于辅助分类生成对抗网络(auxiliary classifier generative adversarial networks,AC-GAN)的数据重构算法对风电机组主轴承温度进行监测.首先,利用采集与监视控制系统(supervisory control and data acquisition,SCADA)时序数据建立基于轻型梯度增强学习器(light gradient boosting machine,LightGBM)的主轴承温度预测模型,并计算其残差特征.其次,利用统计过程控制(statistical process control,SPC)方法对主轴承温度异常残差在控制线范围内进行筛选,并利用AC-GAN算法对残差进行重构.最后,分别提取主轴承温度正常和异常的残差特征,建立基于自然梯度提升(natural gradient boosting,NGBoost)的主轴承状态监测模型.实验结果表明,该方法对主轴承运行状态判断准确度高达87.5%,能够有效地监测风电机组轴承类运行状态.
其他文献
目标检测使用特征金字塔检测不同尺度的物体时,忽略了高层信息和低层信息之间的关系,导致检测效果差;此外,针对某些尺度的目标,检测中容易出现漏检。本文提出双向特征融合与注意力机制结合的方法进行目标检测。首先,对SSD(single shot multibox detector)模型深层特征层与浅层特征层进行特征融合,然后将得到的特征与深层特征层进行融合。其次,在双向融合中加入了通道注意力机制,增强了语