论文部分内容阅读
风险价值(VaR)是市场风险的重要度量工具。以具有厚尾的中兴通讯股票收益率数据为例,分别运用极值理论中的分块样本极大值模型(BMM)和超阈值模型(POT)对VaR进行计算,并给出相应的预期损失(ES),同时提出了一种差异度量的方法对POT模型的阈值进行选取。结果表明,使用极值理论度量风险可以更好地捕捉尾部数据信息,得到更合理且符合实际需求的VaR和ES估计值,且POT模型比BMM模型所得计算结果更加稳定。