论文部分内容阅读
符号化聚集近似是一种有效的时间序列数据离散化降维方法,为了扩展非等维符号化时间序列相似性度量的解决方案,提出了一种新方法。首先将关键点提取技术应用在符号化算法中对时间序列进行降维处理,然后利用文中提出的方法对非等长的时间序列进行局部等维处理,再符号化;最后采用不同的方法进行相似度对比计算。实验结果表明,这种方法是简单而有效的,并且使非等长符号化时间序列的相似性度量及聚类方法得到了拓展。