论文部分内容阅读
众所周知,数列可以看成以正整数集N*(或它的有限子集{1,2,3,…,k})为定义域的函数an=f(n),当自变量按照从小到大的顺序依次取值时所对应的一系列函数值.即数列是一种特殊的函数,因此,用函数的思想观点拓展、探究数列问题已得到一定认可,如:求数列的最大(小)项、单调性等.也正如此,数列中不断推出一些相关恒成立或对任意n∈N*都成立的问题,那么,此类问题有哪些求解思想?它与函数恒成立问题求解有哪些联系?下面结合几个例题对此作些小结: