论文部分内容阅读
HFC-227ea(1,1,1,2,3,3,3-heptafluoropropane) is considered as a promising refrigerant alternative, especially as a component in mixtures, to replace to CFC-12, HCFC-22 and R502. But reliable transport properties data for HFC-227ea are very limited. In this paper, experimental data of viscosity along the saturation line and gaseous thermal conductivity of HFC-227ea are given. The viscosity of HFC-227ea was measured with a capillary viscometer at temperatures between 263.15 K and 333.15 K along the saturation line and its uncertainty of the results is estimated to be no more than ±3%. The thermal conductivity of gaseous HFC-227ea was also measured with a transient hot-wire instrument at temperatures between 259.28 K and 341.75 K and pressures up to 1.289MiPa, and its uncertainty of the results is estimated to be less than ±1%.
HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane) is considered as a promising refrigerant alternative, especially as a component in mixtures, to replace CFC-12, HCFC-22 and R502. Transport properties data for HFC-227ea are very limited. In this paper, experimental data of viscosity along the saturation line and gaseous thermal conductivity of HFC-227ea are given. The viscosity of HFC-227ea was measured with a capillary viscometer at temperatures between 263.15 K and 333.15 K along the saturation line and its uncertainty of the results is estimated to be no more than ± 3%. The thermal conductivity of gaseous HFC-227ea was also measured with a transient hot-wire instrument at temperatures between 259.28 K and 341.75 K and pressures up to 1.289 MiPa, and its uncertainty of the results is estimated to be less than ± 1%.