论文部分内容阅读
充分利用PID结构简单、稳定性强的良好性能以及神经网络的自学习和自适应的特长,引入粒子群优化(PSO)学习算法,设计一种多变量自适应PID型神经网络控制器。神经网络的隐含层由带有输出反馈和激活反馈的混合局部连接递归网络组成,采用PSO学习算法优化神经网络参数。在深入研究分析PSO算法的基础上,引入变异因子和惯性权重自适应策略对该算法进行改进,既发挥了PSO算法随机优化收敛速度快的优点,又克服了该算法易陷入局部最优点的缺点,显著提高了控制系统的性能指标。最后,通过对二级倒立摆控制的仿真分析,证明该算法