论文部分内容阅读
经典的非光滑非负矩阵分解方法只能发现数据中的全局统计信息,对于非线性分布数据无能为力,而流形学习方法在探索高维非线性数据集真实几何结构方面具有明显优势。鉴于此,基于流形正则化思想,提出了一种新颖的基于流形正则化的非光滑非负矩阵分解方法。该方法不仅考虑了数据的几何结构,而且对编码系数矩阵和基矩阵同时进行稀疏约束,并将它们整合于单个目标函数中。构造了一个有效的乘积更新算法,并在理论上证明了算法的收敛性。标准数据集上的实验表明了MRnsNMF的有效性。